首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An experimental study was conducted to investigate the interfacial phenomena between an Al alloy and andalusite low-cement castables (LCCs) containing fixed contents of barium compounds (BaO, BaSO4, and BaCO3) at 1123 K and 1433 K (850 °C and 1160 °C) using the Alcoa cup test. Interfacial reaction products and phases formed during heat treatment of the refractory samples were characterized using scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) and X-ray diffraction analysis (XRD). The addition of both BaO and BaSO4 led to a significant reduction of alloy penetration into the refractory. Hexa-celsian formation was observed in both these refractories, which drastically increased their corrosion resistance. Barite decomposition was observed at 1373 K (1100 °C) in the presence of alumina and silica, which was the precursor for hexa-celsian formation. Barium silicates were formed in all samples containing additives; however, this did not have any major influence on the corrosion resistance. Solidified eutectics of BaSi2 and α-BaAl2Si2 formed in all these samples, which acted as an interfacial barrier that prevented additional molten aluminum penetration; however, the positive effect of intermetallic formation was offset by glassy phase formation in samples containing BaCO3 as the additive.  相似文献   

3.
Interfacial reaction between refractory materials such as zirconia, magnesia and doloma brick, and the metallurgical slags of the CaO‐SiO2‐MgO‐CaF2 system with varying CaF2 content were investigated at high temperatures using various methodologies with static and dynamic modes. To figure out the corrosion mechanism due to interfacial reaction with the slag, the slag characteristics were examined in terms of flow temperature and viscosity and the corroded interface of zirconia, magnesia and doloma refractories were analyzed by SEM‐EDS and EPMA. With an addition of CaF2, three different layers were formed at the interface between slag and zirconia refractory. Furthermore, the corrosion of zirconia refractory was found to be accelerated with an increase of CaF2 which facilitated the dissolution of intermediate compounds. The penetration of slag through the grain boundaries of MgO refractory is enhanced by increasing the content of CaF2 due to an increase in the fluidity of slag in the dynamic mode. On the other hand, in the static condition, a dense Ca2SiO4 layer is formed at the hot face of magnesia‐doloma refractory due to a reaction between silica in slag and lime in doloma, resulting in the protection of direct corrosion of refractory brick. However, the thickness of C2S layer decreases with increasing content of CaF2 due to an increase in fluidity of slag.  相似文献   

4.
Interfacial reactions between Al alloy and andalusite low-cement castables (LCCs) containing 5 wt pct B2O3, B4C, and BN were analyzed at 1123 K and 1433 K (850 °C and 1160 °C) using the Alcoa cup test. The results showed that the addition of boron-containing materials led to the formation of aluminoborate (9Al2O3.2B2O3) and glassy phase containing boron in the prefiring temperature (1373 K [1100 °C]), which consequently improved the corrosion resistance of the refractories. The high heat of formation of the aluminoborate phase (which increased its stability to reactions with molten Al alloy) and the low solubility of boron in molten Al were the major factors that contributed to the improvement in the corrosion resistance of B-doped samples.  相似文献   

5.
Abstract

The dissolution of three doloma based refractories in liquid CaO–Al2O3–SiO2–MgO slag was studied. Cylindrical refractory specimens of doloma, carbon bonded doloma, and magnesia doloma were rotated in a stationary crucible of molten slag under forced convection conditions. Slag composition, temperature, rod rotation speed and rod immersion time were varied. The refractory dissolution rate was determined from the change in diameter of the cylindrical specimens. The corrosion rate was found to increase with temperature and rod rotation speed and decrease when the slag was nearly saturated with MgO. The findings of the study substantiate the assumption that the diffusion of magnesium oxide through the slag boundary layer controls the corrosion process. The results indicated the overall corrosion process to be the dissolution of refractory material into the slag, followed by slag penetration of the pores and grain boundaries and finally, dispersion of the grains into the slag.  相似文献   

6.
《钢铁冶炼》2013,40(7):553-560
Abstract

Magnesium oxide (MgO) based refractories are widely used in secondary refining processes, and their dissolution into refining slag is the primary cause of their shortened lifespan. The dissolution rate was investigated for sintered MgO and commercial MgO–C and MgO–Cr2O3 refractories in a synthesised 50CaO–45Al2O3–5SiO2 liquid (mass-%) slag. The change in slag composition was measured after a refractory sample was placed into the molten slag that was stirred by flowing argon gas at 1773?K. The dissolution rate of the sintered MgO was above those of the MgO–C and MgO–Cr2O3 refractories under the same gas flowrate, although the dissolution rate of all samples increased as the gas flowrate was increased from 25 to 75?mL·min??1. The slag containing 5?mass-% FeO considerably promoted the dissolution of the MgO–C refractory because of the oxidation of carbon by FeO. The dissolution of all the refractories was greatly affected by penetration of the liquid slag, with the mass transfer of MgO in the penetrating slag at lower gas flowrates likely being the rate controlling step. At high gas flowrates, Ar bubbles covered the surface and blocked the contact between the liquid slag and the solid phase, reducing the dissolution rate.  相似文献   

7.
Considerations are directed to the denitrogenation potential of metallurgical slags with respect to steel melts under reducing conditions. Experiments were made to determine partition ratios of nitrogen between molten slag and iron. The investigated systems were aluminate-based slags, containing CaO, MgO, SrO, BaO, CaF2 or ZrO2, in equilibrium with Fe–AI melts and Ca–CaO–CaF2 slags equilibrated with Fe–Ca melts. Denitrogenation efficiency of aluminate-based slags is comparatively low and essentially determined by oxygen potential and basicity of the slag. Denitrogenation efficiency of Ca–CaO–CaF2 slags is much higher and is dependent on calcium activity.  相似文献   

8.
《钢铁冶炼》2013,40(10):732-737
Abstract

Dissolution of Al2O3 into molten CaO–Al2O3–CaF2, a base system of mould flux for continuous casting of high Al steel, has been investigated by employing a rotating cylinder method. The dissolution rate of an alumina rod into molten CaO–Al2O3–CaF2 flux increased with increase in rotating speed and temperature. The apparent activation energy for mass transport of flux C was calculated to be 255·6 kJ mol?1. The rate controlling step during the dissolution process of the alumina rod into molten CaO–Al2O3–CaF2 flux was found to be the diffusion of the solute in the flux boundary layer. The dissolution rate of alumina into molten CaO–Al2O3–CaF2 flux increased with increasing CaO/Al2O3, and it may be caused by the increase in thermodynamic driving force and the decrease in the viscosity of the flux. When the Al2O3 rod was immersed into molten flux, an intermediate compound of CaO.2Al2O3 formed firstly and then dissolved into molten flux.  相似文献   

9.
A sessile-drop study was carried out on Al2O3-10 pct C refractory substrates in contact with molten iron to investigate possible chemical reactions in the system and to determine the influence of carbon and the role, if any, played by the presence of molten iron that can act both as a reducing agent and as a metallic solvent. These investigations were carried out at 1823 K (1550 °C) in argon atmosphere for times ranging between 15 minutes and 3 hours. We report the occurrence of chemical reactions in the Al2O3-10 pct C/Fe system, associated generation of CO gas, and carbon pickup by molten iron. Video images of the iron droplet started to show minor deviations after 30 minutes of contact followed by intense activity in the form of fine aluminum oxide whiskers emanating from the droplet and on the refractory substrate. The interfacial region also changed significantly over time, and the formation of small quantities of iron aluminide intermetallics was recorded after 30 minutes as a reaction product in the interfacial region. These chemical reactions also caused extensive penetration of molten iron into the refractory substrate. This study has shown that alumina cannot be treated as chemically inert at steelmaking temperatures when both carbon and molten iron are present simultaneously. These findings point to an additional reaction pathway during steelmaking that could have significant implications for refractory degradation and contamination of steel with reaction products.  相似文献   

10.
Due to the corrosion of CaO-Al2O3 based slags on refractory materials is related to the safe smelting of low-density and high-strength steel with high aluminum, the reaction experiment of calcium hexaaluminate castables with high-alumina and low-silicon CaO-Al2O3 based slag was carried out by introducing calcium hexaaluminate into corundum castables, and it was compared with that of alumina magnesia castable. The experimental results agreed with that of thermodynamic simulation and show that corundum calcium hexaaluminate castable has excellent slag resistance. Because the corundum calcium hexaaluminate castable reacted with the CaO Al2O3 based slag and produced high melting point phase CA2, which consumed a large amount of CaO in the slag and increased the viscosity of the slag, and CA2 filled the pores and blocked the penetration of slag. The wear mechanism of the calcium hexaaluminate castable is slag infiltration due to the higher porosity. Therefore, the combination of corundum aggregates and calcium hexaaluminate matrix is expected to be a candidate refractory material for ladle lining of low density and high strength steel smelting.  相似文献   

11.
摘要:由于高铝低硅CaO-Al2O3系熔渣对耐火材料的侵蚀损毁影响高铝含量低密度高强钢的安全冶炼生产,为此通过在刚玉质浇注料中引入六铝酸钙,开展六铝酸钙质浇注料与高铝低硅CaO-Al2O3系熔渣反应实验,并与铝镁浇注料进行对比研究了其作用行为。实验结果表明:刚玉 六铝酸钙浇注料具有优异抗渣性能。这主要是由于熔渣中大量的CaO被消耗,间接提高了熔渣黏度,并与刚玉 六铝酸钙浇注料反应生成的高熔点相CA2填充了气孔,阻挡了熔渣的渗透,实验结果与热力学模拟计算结果相吻合。六铝酸钙浇注料自身气孔率高,熔渣主要以渗透形式对六铝酸钙耐火材料造成破坏。因此,将刚玉骨料与六铝酸钙基质组合是有望成为低密度高强钢冶炼用钢包内衬候选耐火材料。  相似文献   

12.
Although there is no thermodynamic limitation to the desulfurization of carbon-saturated iron with CaO, the process is well-known to be slow. Consequently, the desulfurization of carbon-saturated Fe-S, Fe-S-Si, Fe-S-Si-Al, Fe-S-Zr alloys by CaO, and Fe-S-Si alloys by CaO-10 % CaF2 were investigated to determine the reaction mechanism. For this purpose, dense CaO and CaO-10 % CaF2 discs were cemented to the bottoms of graphite crucibles containing the carbon saturated alloys. The desulfurization experiments were run at 1450°C in an SiC resistance furnace under argon gas atmosphere. The results indicate that the desulfurization of hot metal by CaO is greatly improved by prior addition of aluminum to the hot metal. The addition of 10 % CaF2 to CaO also increases the rate of desulfurization. Zirconium, which has a stronger affinity for oxygen than aluminum did not increase the rate. SEM and X-ray diffraction studies on the surfaces of CaO discs used to desulfurize carbon-saturated Fe-S, and Fe-S-Si alloys showed that solid CaS, and solid CaS plus small amount of solid 2 CaO · SiO2 compounds form on the lime surface, respectively. The slow reaction rate with CaO is attributed to the solid reaction products which block the reaction by preventing the occurrence of interfacial turbulence.  相似文献   

13.
Understanding the viscous behavior of silica-based molten fluxes is essential in maintaining the reliability of steel casting operations and in preventing breakouts. In particular, high concentrations of aluminum in recently developed transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) steels tend to promote reduction of silica in the mold fluxes that result in the formation of alumina, which in turn increases the viscosity. To counteract this effect, significant amounts of fluidizers such as CaF2 and Li2O are required to ensure that mold fluxes have acceptable lubrication and heat transfer characteristics. The viscous behavior of the slag system based on CaO-SiO2-12 wt pct Na2O with various concentrations of CaF2 and Li2O has been studied using the rotating spindle method to understand the effects on the viscosity with these additives. CaF2 additions up to 8 wt pct were effective in decreasing the viscosity by breaking the network structure of molten fluxes, but CaF2 concentrations above this level had a negligible effect on viscosity. Li2O additions up to 2 wt pct were also effective in decreasing the viscosity, but the effect was comparatively negligible above 2 wt pct. Using Fourier transform infrared (FTIR) analysis of as-quenched slag samples, it was concluded that the viscosity was controlled more effectively by changing the larger complex silicate structures of rings and chains than by changing the amounts of simpler dimers and monomers.  相似文献   

14.
采用真空感应炉浸棒法,研究了高钙与低钙材料在真空动态条件下抗侵蚀性的差异。该法的实验条件是真空度5kPa、1650℃保温25min;观察与测量了实验后的试样,并用SEM与EDAX分析了侵蚀后试样的结构与组成。结果表明,在CaO-SiO2熔渣条件下,低碱度熔渣对镁钙试样有较强的侵蚀性,随熔渣碱度的升高其侵蚀作用明显缓解,当碱度R〉1.5时试样的抗侵蚀性恶化,低钙镁钙材料的抗侵蚀性优于高钙材料。在CaO-Al2O3熔渣条件下,2种材料的抗侵蚀性都很差。  相似文献   

15.
《钢铁冶炼》2013,40(6):414-424
Abstract

Magnesium aluminate spinel (MgAl2O4) is an excellent castable refractory product due to its high temperature thermal, chemical and mechanical properties. Alumina spinel castables are produced by addition of synthetic spinel or in situ spinel formation during the firing process. In the first part of the experimental studies, alumina rich MgAl2O4 spinel castable was produced using a solid state reaction technique. Tabular alumina and sea water magnesia (<100 μm) were used as starting raw materials. In the second part of the experimental studies, commercial synthetic spinel added castables were produced. In order to compare experimental results, both parts of the experimental study involved compositions with the same proportions of MgO. α-500 hydratable alumina was used as binder. Castables were sintered at 1500 and 1600°C. Water absorption, apparent porosity, bulk density and cold crushing strength values were considered and the optimum sintering temperature, proportions of synthetic spinel and sea water magnesia were determined. The XRD patterns confirm the phase formation of MgAl2O4. Moreover, the physical properties of the castables were supported by this XRD analysis. Scanning electron microscopy investigations of the fired samples were carried out to compare the effect of synthetic spinel addition and in situ phase formation on the physical properties of the castables. The mechanism of slag penetration to two types of zero cement castables for steel ladles was examined and the penetration layer chemically analysed by energy dispersive X-ray analysis studies.  相似文献   

16.
CurrentSituationandProspectofHighPerformanceRefractoriesforIronandStelIndustryinChinaSongShentaiVice-Chief-EnginerofCISRI,Pro...  相似文献   

17.
In view of the importance of tramp element contamination of steel products through a large volume of scrap consumption in the near future, the thermodynamic behaviour of Sb, As, Sn and Cu in CaO—CaF2 melts under reducing conditions was studied by examining the dependences of distribution of each element between Cu, Ag or Sn alloys and CaO—CaF2 melts on the CaO activity, oxygen partial pressure and temperature around 1 500°C. As a result, the reaction products on treatment by Ca compounds were demonstrated to be Ca3Sb2, Ca3As2, Ca2Sn and CaCu. Experimentally obtained distributions were extrapolated to lower oxygen partial pressures less than 10?18 atm to estimate the feasibility of removing those tramp elements from molten iron. It is thermodynamically indicated that if the prevailing oxygen partial pressure of the environment is below 10?23 atm, these impurities, except Cu, would be substantially removed from molten steel.  相似文献   

18.
A model for viscosity estimation of molten aluminosilicate slag, which was developed in our previous study, was extended to estimate viscosity of multi‐component slag containing alkali oxide and calcium fluoride in this study. The charge compensations of alkali oxides for Al tetrahedral ions are explicitly taken into account in the equations. The effect of calcium fluoride on the viscosity of slag was modeled by considering Ca‐2F species and no network‐breaking effect of CaF2 were considered. The present model was applied to estimate the viscosity of slags within Al2O3‐CaO‐FeO‐MgO‐SiO2‐CaF2‐Na2O‐K2O system. A good agreement with a mean deviation of ~20% was achieved by comparison between estimated and measured values.  相似文献   

19.
The conductivity of slags in the binary systems CaF2+Al2O3, CaF2+CaO and the ternary system CaF2+CaO+Al2O3 has been measured, using a four-lead electrode technique at a frequency of 1 kHz. The cell design used ensured that only molybdenum metal was in contact with the slag at high temperature and that the slag was wholly contained in molybdenum. No frequency dispersion could be detected at frequencies between 0.8 to 10 kHz. It is suggested that the formation of complex ions (e.g. AlO2F2 3− and AlOF 2 ) might account for the observed effects in CaF2+Al2O3, CaF2+CaO+Al2O3 liquids as has been previously suggested. an oxide ion clustering mechanism may explain the conductivities found in CaF2+CaO.  相似文献   

20.
The sulfide capacity of CaO-CaF2-CaCl2 slag was determined at temperatures from 1000 °C to 1300 °C by equilibrating molten slag, molten silver, and CO-CO2-Ar gas mixture. The sulfide capacity increases with replacing CaCl2 by CaF2 in slags of constant CaO contents. The sulfide capacity also increases with increasing temperature as well as with increasing CaO content at a constant ratio of CaF2/CaCl2 of unity. A linear relationship between the sulfide capacity and carbonate capacity in literature was observed on a logarithmic scale. SIMEON SIMEONOV, formerly Visiting Research Fellow, Institute of Industrial Science, University of Tokyo. TOSHIHIKO SAKAI, formerly Research Fellow, Institute of Industrial Science, University of Tokyo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号