首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer–particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle‐polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion‐transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions.  相似文献   

2.
With the development of flexible electronic devices and large‐scale energy storage technologies, functional polymer‐matrix nanocomposites with high permittivity (high‐k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high‐k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one‐dimensional (1D) and two‐dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high‐k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized.  相似文献   

3.
修饰纳米CdS/聚合物的界面相互作用与光学性能   总被引:2,自引:0,他引:2  
采用微乳液法结合原位表面修饰合成了纳米尺度的硫化镉粒子,采用溶液共混和静态铺膜方法制备了纳米粒子/聚合物复合体系,以研究纳米粒子与聚合物间的界面作用.结果表明,经修饰的纳米CdS粒子比较均匀地分散于聚合物基体内,纳米粒子与聚合物基体间存在较强的相互作用.根据复合体系的紫外-可见吸收光谱和荧光光谱,分析了表面修饰(表面修饰剂种类、表面修饰剂用量等)对纳米粒子的分散以及复合体系界面特性的影响,证实了表面修饰剂具有促进纳米粒子分散和消除粒子表面缺陷的作用.  相似文献   

4.
Polymer/Clay offer tremendous improvement in wide range of physical and engineering properties for polymers with low filler loading. In nanotechnology polymer/clay nanocomposites use smectitetype clays that have layered structures. In this work, Poly (methyl methacrylate) (PMMA) was synthesized by free radical addition polymerization in the presence of high power ultrasound. The Poly (methyl methacrylate) (PMMA)-Montmorillonite (MMT) clay nanocomposites were synthesized by two different techniques viz., ultrasonic mixing and magnetic stirring. An analysis of the XRD data confirms that the composites are in the nanometer scale. The FTIR spectra show that there is strong interaction between the clay and the polymer that enhances the thermal stability. The thermal stability of the experimental nanocomposite prepared by the two processes is compared. Further analysis of XRD data shows that intercalation as well as exfoliation has taken place in both the types of nanocomposites preparation. An analysis of the TG, DTG curves reveal that the thermal stability is found to increase by nearly 30% for ultrasonic mixing than that of magnetic stirring.  相似文献   

5.
The polymerization of styrene mechanochemically initiated by the grinding of talc was performed by using a vibrating ball mill. Talc used was one of layered clay minerals as well as montmorillonite. The effect of the grinding of talc on the polymerization of the styrene was investigated by characterizing the polymer formed and talc ground. The results revealed that of all the experiments we have performed thus far, styrene most abundantly polymerized by grinding of talc. The polymerization of styrene was closely related to the total surface area of the ground talc. The products obtained were the composites of talc particles and resulting polymer attached to the particle surface. From the analysis of the molecular weight distribution of the polymer, it was suggested that the polymerization of the styrene proceeded with two types of cationic active species which were produced by the grinding of layered clay minerals. Mechanochemical polymerization is expected to be one of the more promising production processes of polymeric nanocomposites when layered clay minerals can be ground to finer nanometer sized-particles.  相似文献   

6.
高介电性能的陶瓷-聚合物复合材料的研究现状   总被引:2,自引:0,他引:2  
在材料研究领域中,具有电学性能的陶瓷/聚合物复合材料是一种新型的复合材料,其中具有高介电性能的陶瓷/聚合物0-3复合材料以其广泛的应用前景已经引起人们极大的关注。文中介绍了具有高介电性能的陶瓷/聚合物复合材料的介电理论模型及其制备方法,概述了国内外的研究现状及应用,并且对未来的发展趋势做了展望。  相似文献   

7.
《Composites》1979,10(2):95-100
Data are presented which show that the critical volume loading of a metallic filler needed to induce electrical conductivity in a polymer matrix can be substantially reduced by adding the metal as randomly dispersed fibres. Higher aspect ratio fibres will induce conductivity at lower volume loadings. Composites exhibiting resistivities below 200 ohm cm have been prepared with as little as 7.7 volume percent aluminium fibres having an aspect ratio of 24 : 1. At such low filler loadings the mechanical properties of the composite are similar to those obtained with an identical loading of milled glass fibres. While aluminium is poorly wet by most virgin polymers, this characteristic can be improved by polymer modification and surface treatments. The thermal properties of these composites are shown to follow predictions based on Nielsen's theory.  相似文献   

8.
Polymer composites with high permittivity and low dielectric loss are highly desirable in electronic and electrical industry. Adding conductive fillers could significantly increase the permittivity of a polymer. However, polymer composites containing conductive fillers often exhibit very high dielectric loss due to their large electrical conduction or leakage currents. In this work, by engineering TiO2-nanorod-decorated multi-walled carbon nanotubes (TD-CNTs), polystyrene (PS) composite with high permittivity and low dielectric loss have been successfully prepared. The composite containing of 17.2 vol.% TD-CNTs has a permittivity of 37 at 1 kHz, which is 13.7 times higher than that of the pure PS (2.7), while the dielectric loss still remains at a low value below 0.11. The dielectric properties of the composites are closely related to the length of CNTs and the loading level of TiO2-nanorods on the CNT surfaces.  相似文献   

9.
Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D‐BNNS) network using ice‐templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m−1 K−1), a low thermal expansion coefficient (24–32 ppm K−1), and an increased glass transition temperature (Tg) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.  相似文献   

10.
The modification of epoxy resins with nanoparticles could endow the materials with some superior properties such as broadening of the glass transition temperatures, modest increases in the glassy modulus, low dielectric constant, and significant increases in key mechanical properties. In the last 15 years, some studies have shown the potential improvement in properties and performances of fibre reinforced polymer matrix materials in which nano and micro‐scale particles were incorporated. From the existing literature, considerable effort has been given to the synthesis and processing of these unique polymers, but relatively little work has focused on the fibre reinforced epoxy composites. The purpose of this work, therefore, is to review the available literature in epoxy‐fibre reinforced composites manufactured using carbon nanotubes, carbon nanofibre and nanoclays for reinforcement.  相似文献   

11.
Thermal and dielectric properties of polymers reinforced with micro-sized aluminium nitride (AlN) particles have been studied. A set of epoxy–AlN composites, with filler content ranging from 0 to 25 vol% is prepared by hand lay-up technique. With similar filler loading, polypropylene -AlN composites are fabricated by compression molding technique. Density (ρc), effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and dielectric constant (εc) of these composites are measured experimentally. The various experimental data were interpreted using appropriate theoretical models. Incorporation of AlN in both the resin increases the keff and Tg whereas CTE of composite decreases favourably. The dielectric constant of the composite also found to get modified with filler content. With improved thermal and modified dielectric characteristics, these AlN filled polymer composites can possibly be used for microelectronics applications.  相似文献   

12.
The polymer composites filled with nanoparticles have good friction and wear properties and widely used in many fields. The performances of nanocomposites are influenced extensively by the nanoparticles morphology, size, volume fraction and dispersion. Nanometer ZrO2 particles have good properties, lower prices and shows good foreground in resist-materials of polymer composites. In this paper, the nanometer ZrO2 particles are treated by silane coupling agent of N-(2-aminoethyl)-γ-aminopropylmethyl dimethoxy silane. The effect of nanometer ZrO2 content and silane coupling agent on the friction and wear properties of BMI copmposites filled with nanometer ZrO2 are investigated. The composites filled with untreated ZrO2 and treated ZrO2 are prepared by the same way of mechanical high shear dispersion process and casting method. The sliding wear performance of the nanocomposites is studied on an M-200 friction and wear tester. The experimental results indicate that the frictional coefficient and the wear rate of the composites can be reduced by filled with nanometer ZrO2. The composites containing treated nanometer ZrO2 have the better tribological performance than that containing untreated nanometer ZrO2. The results are explained from the SEM morphologies of the worn surface of matrix resin and the composites containing nanometer ZrO2 and the TEM photographs of the nanometer ZrO2 dispersion in the matrix.  相似文献   

13.
The self‐assembly of colloidal conjugated polymers presents a versatile and powerful oute towards new functional optoelectronic materials and devices. However, this strategy relies on the existence of chemical protocols to prepare highly monodisperse colloids of conjugated polymers in high yields. Here, a recently developed Suzuki–Miyaura dispersion polymerization method is adopted to synthesize core–shell particles, in which a conjugated polymer shell is grown onto non‐conjugated organic and inorganic colloidal templates. By chemically anchoring aryl halide groups at the particle surface, a conjugated polymer shell can be attached to a wide variety of organic and inorganic microparticles. In this way, both spherical and non‐spherical hybrid conjugated polymer particles are prepared, and it is shown that the method can be applied to a variety of conjugated polymers. This new method offers independent control of the size, shape and photophysical properties of these novel conjugated polymer particles.  相似文献   

14.
Natural polymers fibres such as hair and wool have been exploited since antiquity. The development of synthetic polymers in the last century was driven partly by the need for man-made fibres. Because of this, polymer fibres have been the focus of intensive research for a many years and, by some people, the field is now perceived as being mature. This, however, is far from the case and in recent years there have been unparalleled developments in the preparation of new polymer-based fibres, new techniques of fibre characterisation and novel applications of polymer fibres. Moreover, polymer fibres are finding increasing use in high-performance composites where their high levels of stiffness and strength combined with low density give rise to materials with outstanding mechanical properties.  相似文献   

15.
镁基复合材料具有低的密度、高比强度、比刚度与优异的阻尼性能,是汽车、航空航天等领域的理想化轻量材料,已经成为近年来新材料领域的研究热点。合理有效地选择颗粒增强相对于提升镁基复合材料的性能有着重要的作用。分别从外加法与原位合成法两个方面综述了镁基复合材料颗粒增强相的类型及其对材料力学性能的影响,并对其相应的应用现状进行了分析。最后对颗粒增强相的发展趋势进行了展望。  相似文献   

16.
The present investigation deals with the preparation and characterization of nanocomposites of polyether ether ketone (PEEK) containing nanosized zirconia filler up to 3 wt.% loading. It has been observed that presence of zirconia filler dispersed in polymer matrix enhances various basic and functional properties (e.g., mechanical properties, thermal stability & other physico-mechanical properties). The SEM studies reveal that the dispersion of zirconia nanofiller is uniform throughout the polymer matrix. The thermal stability of the nanocomposites has been studied by TGA. Thermal analysis of the composites shows an increase in the thermal stability with increase of nanofiller content. This may be attributed to strong interaction between polymer chains and filler particles. DMA studies show the significant improvement in storage modulus of the nanocomposites because of better interaction of zirconia particles in PEEK matrix.  相似文献   

17.
A novel processing route for producing composites from ceramic particles and a thermoplastic polymer with high ceramic content was developed. Via a radical emulsion polymerization reaction in an aqueous suspension, titanium dioxide is encapsulated by a thin layer of poly(methyl methacrylate). Subsequently, the coated particles are compacted by applying high pressure (∼1 GPa) at a temperature above the glass transition temperature of the polymer (∼160 °C). This technique enables producing dense, hard and stiff composites at low processing temperatures. Microstructural investigations of composites by scanning electron microscopy confirm successful coating of titanium dioxide particles by polymer. Compositions were estimated from thermogravimetric measurements. A maximum TiO2 volume content of almost 70% was achieved. For characterizing mechanical properties, Vickers microhardness as well as flexural strength and elastic modulus were determined. With respect to pure PMMA, composites exhibit a 10-fold increase in microhardness. Furthermore, a strong increase in elastic modulus with TiO2 contents, up to 40 GPa at 66 vol.% TiO2 was observed. These moduli are among the highest found in literature for ceramic polymer composites. However, bending strength of the material is still low.  相似文献   

18.
考察了纳米SiO2对聚丙烯酸酯复合涂层在水润滑下摩擦磨损性能的影响。利用FTIR分析纳米SiO2与聚丙烯酸酯的界面结合;利用SEM观察复合涂层磨损表面,并结合FTIR和摩擦磨损实验分析其磨损机理。结果表明:水润滑时,聚丙烯酸酯在摩擦过程中会发生摩擦化学反应,引起涂层摩擦腐蚀磨损;而纳米SiO2能与聚丙烯酸酯以化学键的形式结合,它的加入有助于摩擦界面在水介质中形成具有较好减摩作用的表面膜和水分子膜,提高聚丙烯酸酯复合涂层的耐磨性。在水润滑下,当纳米SiO2的含量较低时,涂层表面的磨损形式为摩擦腐蚀磨损和磨粒磨损;当纳米SiO2的含量达到5wt% 时,涂层表面形成完整的表面膜和水分子膜,此时涂层具有良好的摩擦学性能。   相似文献   

19.
高导热低填量聚合物基复合材料在电子封装和大功率电子设备等领域有着巨大需求。通常高导热聚合物是通过在高分子基体中均匀分散高含量的导热填料来实现的,然而较高填料含量会极大地恶化复合材料力学性能和提升材料经济成本,因此高填量复合材料很难满足当前工业应用上的需求。综述了近年来高导热低填量聚合物基复合材料制备研究进展,简要介绍了导热机制和影响低填量聚合物基复合材料导热性能的主要因素,按照不同填料类型介绍了一些热导率高于1.0 W/(m·K)且填充量低于10vol%的高导热低填量聚合物基复合材料的制备方法和研究进展,展望了高导热低填量聚合物基复合材料的发展方向。  相似文献   

20.
Graphene oxide (GO) was added to a polymer composites system consisting of surfactant-wrapped/doped polyaniline (PANI) and divinylbenzene (DVB). The nanocomposites were fabricated by a simple blending, ultrasonic dispersion and curing process. The new composites show higher conductivity (0.02–9.8 S/cm) than the other reported polymer system filled with PANI (10−9–10−1 S/cm). With only 0.45 wt% loading of GO, at least 29% enhancement in electric conductivity and 29.8% increase in bending modulus of the composites were gained. Besides, thermal stability of the composites was also improved. UV–Vis spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) revealed that addition of GO improves the dispersion of PANI in the polymer composite, which is the key to realize high conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号