首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
为获得高强度和大面积大气压下等离子体射流,利用类蜂巢状电极结构,在大气压He中获得了两种不同模式的二维射流阵列放电,比较了它们的放电特性,并研究了气流速度、射流单元之间距离和外加电压幅值等参数对射流阵列模式转换的影响。结果表明,He中射流阵列在一定条件下会出现具有较高放电强度的强耦合模式和具有较大放电面积的均匀模式两种放电模式,相同的外加电压幅值下,强耦合模式阵列的放电功率、传输电荷和主要粒子谱线强度均高于均匀模式。射流单元之间距离和气体流速是影响射流阵列模式转换的主要决定因素,外加电压的变化只会影响到放电强度而不会影响到射流阵列的放电模式。射流单元之间距离为0.2mm,流速小于5L/min时,放电模式为强耦合模式;流速大于5L/min放电转换到均匀模式;当射流单元之间的距离超过0.4mm时,放电只出现均匀模式。  相似文献   

2.
为促进大气压Ar/H2O等离子体射流放电在材料表面改性、等离子体医学及环境工程等方面的应用,研究了大气压Ar/H2O等离子体射流放电模式和放电参量。测量了这种射流在不同外加电压下的电气特性、发光特性及光谱特性,并据此计算得到主要放电参量,如放电功率、传输电荷、电子激发温度、分子振动温度以及转动温度等随外加电压的变化规律。结果表明:随着外加电压的增大,大气压Ar/H2O等离子体射流放电模式可分为电晕放电、介质阻挡放电和射流放电3个阶段,并可通过电压电流波形图和发光图像进行区分。Ar/H2O等离子体射流产生的粒子主要有Ar、OH以及少量的O和N2等。随着外加电压的增大,放电功率、传输电荷及主要粒子(包括OH)的谱线强度都随着外加电压的增大而增大。当外加电压从7 kV增加到9.5 kV时,分子振动温度和转动温度随着外加电压的增大而增大,其变化范围分别为1 000~2 200 K和350~550 K。当外加电压为9.5 kV时,电子激发温度为0.646 eV。  相似文献   

3.
方志  张波  阮陈 《高电压技术》2016,(4):1151-1158
为获得大气压大面积射流低温等离子体,在大气压He中产生稳定的2维射流阵列放电,并通过发光图像、电压电流波形、Lissajous图研究其发光特性和电气特性。在此基础上,研究了电极结构、电压幅值、气体体积流量对2维射流阵列放电特性和均匀性以及射流长度、放电功率和传输电荷等关键放电参数的影响。结果表明:针–环和针–环–板结构的射流阵列在一定条件下都能产生均匀、稳定的等离子体射流阵列。电压幅值的增加对放电均匀性影响不大,但能有效提高射流阵列的放电功率和射流长度,从而提高射流阵列放电强度;气体体积流量对放电强度影响较小,但对放电均匀性影响较大,因此增大气体体积流量可以提高放电均匀性;电极结构对放电功率和传输电荷影响较少,在电压幅值、气体体积流量较小的情况下,板电极的引入有助于获得更长的射流。  相似文献   

4.
为获得大气压下均匀稳定的大尺度低温等离子体射流,用交流(AC)和纳秒(ns)脉冲电源激励在氦气中产生一维射流阵列放电,比较两种电源激励射流阵列的放电均匀性、瞬时功率、平均功率和发射光谱强度等放电特性和参量,并通过拍摄气流通道的纹影图像和估算射流单元之间的库仑力作用,研究和分析射流阵列的射流单元之间的流场和电场相互作用。结果表明,采用ns脉冲电源可以有效地提高射流阵的均匀性,增加等离子体羽长度、瞬时功率和粒子谱线强度,降低平均功率。不同于AC激励射流阵列,ns脉冲激励的射流阵列中两侧的射流单元几乎不发生偏转。采用ns脉冲激励可以同时减少气体加热作用和库仑力的排斥作用,从而有效地抑制射流单元之间的流场和电学相互作用,是提高射流阵列均匀性的主要原因。  相似文献   

5.
6.
为了比较大气压下Ar/O2和Ar/H2O等离子体射流放电特性的区别,混入相同含量的O2和H2O,通过测量电压电流波形,Lissajous图形,发光图像,发射光谱等放电特性,研究了两种气体工作时,等离子体射流的放电特性和演变规律.计算放电功率、传输电荷、电子激发温度、分子振动温度、分子转动温度等主要放电参量后,研究了它们随外加电压幅值的变化趋势,并就趋势图和实验结果做机理分析和讨论.研究结果表明,两种气体下等离子体射流的放电形式为电晕放电、DBD以及射流形成等三个阶段,随着电压的增加,两种气体的射流长度不断增加.两种气体的发射光谱图中,产生的主要发光粒子均为OH、Ar、N2和O,气体温度在300~650K范围内,属于低温等离子体.在外加电压幅值为7~9.5kV范围内,Ar/H2O等离子体射流光谱强度要强于氩氧,通过对电子激发温度和分子转动温度的计算,发现Ar/O2和Ar/H2O的电子温度相差不大,但是Ar/H2O有更低的气体温度,更有利于处理热敏感材料.  相似文献   

7.
乙醇是一种医疗上常用的消毒剂,理论上在Ar等离子体射流处理的水溶液中掺杂乙醇可以增强灭菌效果.通过对耐甲氧西林金黄色葡萄球菌的灭活实验,发现在被处理的水溶液中掺杂20%乙醇可使Ar射流等离子体活化水的灭菌效果提高5个数量级以上.进一步地,发现当工作气体中掺杂0.2%N2或在屏蔽罩中掺杂1%O2时,只需在被处理的水溶液中...  相似文献   

8.
大气压氩等离子体射流的放电特性   总被引:2,自引:0,他引:2  
方志  刘源  蔡玲玲 《高电压技术》2012,38(7):1613-1622
为了深入地理解大气压等离子体射流放电机理和优化其放电效率,通过对大气压氩等离子体射流的电压电流波形和Lissajous图形等电气特性的测量及发射光谱和发光图像等光学特性诊断,研究了外电极距石英玻璃管口不同距离时,氩等离子体射流放电的放电特性和演变规律。计算放电功率、传输电荷量、电子激发温度、分子振动温度和分子转动温度等主要放电参量后,研究了它们随外加电压增加的变化趋势,并结合放电机理对所得实验结果进行了分析。结果表明,氩等离子体射流主要产生的粒子有OH、N2、Ar和少量的O,随着外电极位置的不同,气体温度在317~395K之间变化,为典型的低温等离子体;外电极位置影响放电模式和放电起始电压,在氩射流阶段,电子激发温度在不同外电极位置条件下相差不大。当外电极距离管口40mm时,外加电压幅值达8kV时,放电功率和传输电荷最大,放电效果和发光强度也最强,由Penning效应产生的OH谱线强度也最强,因此,用于聚合物材料表面改性等应用时,可以采用此运行参数,以达到更好处理效果。  相似文献   

9.
基于介质阻挡放电的形式,设计并制作了两种等离子体射流装置:一种内电极裸露;另一种内电极覆盖有石英玻璃。笔者对两种不同电极等离子体射流装置的特性进行了测量。在中频正弦电源通入Ar的情况下,测量了放电的李萨如(Lissajous)图、放电的图像和放电的光谱图;并且分别由放电的Lissajous图和光谱图,计算得到了放电的功率和电子激发温度。实验结果表明:在外施电压保持不变的情况下,气流对于放电的功率和电子的温度几乎没有影响;通过对比两种射流装置的电学和光学特性发现,与内电极覆盖有石英玻璃的等离子体射流装置相比,内电极裸露的情况下,其放电的功率和电子激发温度均比较大。  相似文献   

10.
大气压氩等离子体射流特性   总被引:2,自引:0,他引:2  
为了在大气压下获得均匀、稳定且具有较大体积的氩气介质阻挡放电等离子体射流,提出了一种新的同轴型具有螺纹型内电极结构的等离子体发生器结构设计,在大气压开放环境下获得了均匀稳定的类辉光氩气介质阻挡放电等离子体射流。实验和初步的零维数值模拟结果表明:在所研究的工作参数范围内,放电随外加电压的增加可工作于初始放电阶段、过渡阶段、稳定放电和不稳定放电阶段;在稳定放电模式下,均匀弥散的类辉光放电可充满内径为8.9mm的玻璃管,发射光谱测量结果表明在等离子体射流区含有多种化学活性粒子;数值计算和实验测量所估算的等离子体射流长度基本一致(可为30mm以上),且等离子体射流发射光谱强度的轴向分布与其中亚稳态粒子的退激发过程相关。  相似文献   

11.
为了研究锥形管对Ar大气压等离子体射流的影响,在环–板电极结构的基础上,采用锥形石英玻璃管作为等离子体射流反应器,并引入了悬浮电极,对其进行了实验研究。通过大气压氩等离子体射流的电气特性的测量和光学特性的诊断,包括拍摄发光图像,测量射流的电压–电流波形和发射光谱,然后计算获得平均放电功率和电子激发温度,研究了当采用不同形状的玻璃管时,Ar等离子体射流的放电特性和演变规律,并结合气体流场仿真与电场仿真对所得的实验结果进行了分析。结果表明:与传统的直管电极结构相比,引入悬浮电极的基于锥形管的环–板电极结构产生的等离子体射流的放电电流有效值、放电功率以及电子激发温度均有所提高;利用锥形管可以使管中Ar气流在出口处的流速更快,且速度分布更为均匀,使得Ar气流可以更为平稳的向前扩展;同时在管口附近形成Ar含量较大的气体氛围,更有利于放电的发展;在环板电极结构中引入悬浮电极,加强了高压电极与悬浮电极间的电场,更易使流过电场中的气体电离,并且使能量集中在射流产生通道,提高了能量利用率。  相似文献   

12.
大气压氦气冷等离子体射流放电一维数值模拟   总被引:1,自引:0,他引:1  
刘富成  王德真 《高电压技术》2012,38(7):1749-1757
为了明确大气压冷等离子体射流的形成机理,采用一维流体模型研究了针-板电极下大气压氦气冷等离子体射流中等离子体子弹的传播过程,得到并分析了等离子体子弹的空间结构。模拟结果表明,等离子体子弹实际上就是等离子体射流头部的电离区域,其传播过程即为该电离区域的推进过程。Penning电离可以为等离子体射流的传播提供种子电子。驱动电压的极性对等离子体射流的性质有着重要的影响,与正脉冲驱动等离子体射流不同,负脉冲驱动下的等离子体射流具有一个较窄的阴极位降区,且内部没有准中性区域。  相似文献   

13.
空气等离子体射流动态过程分析   总被引:1,自引:0,他引:1  
等离子体射流可有效提高点火效率,为探究等离子体射流动态特性,建立了实验测量系统,利用高速CCD相机记录等离子体点火射流发展过程,分析了等离子体射流击穿过程和稳定工作过程特性。实验结果表明:设计的等离子体点火器电弧击穿时间为65 ns,击穿电压为9.2 k V,射流形成时间约为1.62 ms;大尺度分流周期约为1.1~1.8 ms,小尺度分流周期约为0.1~0.16 ms;电极温度的均匀度、高速旋流气体对电弧发展以及射流形成过程中的强烈脉动有不同程度的影响;射流核不存在稳定区域。  相似文献   

14.
15.
为了探讨He大气压等离子体射流(APPJ)的产生机理,采用增强型电荷耦合元件(ICCD)分别拍摄HeAPPJ的纵截面和横截面图像发现,He在17kHz中频正弦外施电压下正负半周的APPJ图像不对称,在正半周电压下,He APPJ以空间流光的形式向石英管口传输,至石英管外转换为沿He/Air界面传输的沿面放电;而在负半周电压下,He APPJ传播较正半周下短,为一种典型的存在于He气流中的电晕放电现象。研究APPJ长度与管内介质阻挡放电(DBD)放电模式的关系发现,随着外施电压的升高,DBD放电将依次呈现出"倍周期"、"混沌"、"流光-辉光过渡"、"非对称辉光"、"对称辉光"和"辉光+丝状"等6种模式,各个模式的放电电流波形具有不同的特征,等离子体羽流长度并不是单纯地随着外施电压增大而增长的量,而是放电所产生的He激发态粒子浓度与放电对气流的扰动两方面共同作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号