首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several isotopes are examined as alternatives to 238Pu that is traditionally used in radioisotope thermoelectric generators (RTGs) and heating units (RHUs). The radioisotopes discussed include 241Am, 208Po, 210Po, and 90Sr. The aim of this study is to facilitate the design of an RTG with a minimal radiation dose rate and mass including any required shielding. Applications of interest are primarily space and planetary exploration. In order to evaluate the properties of the alternative radioisotopes a Monte Carlo model was developed to examine the radiation protection aspect of the study. The thermodynamics of the power generation process is examined and possible materials for the housing and encapsulation of the radioisotopes are proposed. In this study we also present a historical review of radioisotope thermoelectric generators (RTGs) and the thermoelectric conversion mechanism in order to provide a direct comparison with the performance of our proposed alternative isotope systems.  相似文献   

2.
邹宇  黄宁康 《核技术》2006,29(6):432-437
本文介绍伏特效应放射性同位素电池的工作原理及电池类型.重点介绍了适用于心脏起搏器、微机电系统(MEMs)等的辐射伏特效应放射性同位素微电池,并对这种电池的应用前景作了展望.  相似文献   

3.
Future exploration of deep space requires space power with high power density, light weight, low cost and high reliability. Space reactor is an excellent candidate with its unique characteristics of high specific power, low cost, strong environment adaptability and so on. Among all types of space reactors, heat pipe cooled space reactor, which adopts the passive heat pipe as core cooling component, is considered as one of the most promising choice and is widely studied all over the world. Startup characteristics of this type space reactor are an active topic.Previous studies mainly focused on the startup from high temperature rather than environmental temperature. In order to simulate the transient startup process from frozen state, a transient analysis code (TAPIRS) for heat pipe cooled space reactor power system (HPS) has been developed and applied to investigate the system transient performance during a startup from zero cold power to full power. The code integrates separately validated point reactor kinetics model, lumped parameter core heat transfer model, combined heat pipe (HP) model (self-diffusion model, flat-front startup model and network model), energy conversion model of alkali metal thermal-to-electric conversion units (AMTEC), and HP radiator model. By comparing the simulation results of the models and steady state with those in the references, the rationality of the models and the solution method is validated. It is found that by adjusting the control drum's rotational speed, the reactor can startup from subcritical state to full power state while the heat pipe and AMTEC from solid state to normal operational state. HPS can startup entirely depending on the nuclear power, and the maximum temperature of the heat pipe does not exceed 1250 K in the whole startup process. The maximum errors of the parameters between the simulation results of this paper and those in the literature at the full power condition are less than 5%. Under the accident of control drum failure with largest reactivity insertion, the fuel temperature can be controlled within the safety limits. These show that the reactor system has characteristics of no single-point failures, the self-stabilization capability under accident conditions.  相似文献   

4.
5.
对称体与旋转体热源自埋过程中接触熔化的研究   总被引:4,自引:2,他引:2  
蔡琦  陈文振 《核技术》1996,19(2):106-109
研究了对称体与旋转体热源与重力作用下,熔化其周围固体介质而进行自埋的过程。先求得问题的通用表达式,再以水平圆柱和圆球热源为例对熔化进行了讨论结果表明了通解的正确生和普遍性。  相似文献   

6.
This paper demonstrates technical features and conceptual scheme of innovative self-contained low power reactor MASTER for heat supply. Neutron-physical and thermo-hydraulic characteristics of this reactor are analyzed. The possibility of power self-control and minimization of reactivity swing during fuel burnup are considered.  相似文献   

7.
Lithium heat pipes have broad applications in heat pipe cooling reactors and hypersonic vehicles owing to their ultra-high working temperature.In particular,when the length of the lithium heat pipe is ultra-long,the flow and heat transfer characteristics are more complex.In this study,an improved lumped parameter model that considers the Marangoni effect,bending effect,and different vapor flow patterns and Mach numbers was developed.There-after,the proposed model was verified using the University of New Mexico's Heat Pipe and HTPIPE models.Finally,the verified model was applied to simulate the steady-state operation of an ultra-long lithium heat pipe in a Heat Pipe-Segmented Thermoelectric Module Converters space reactor.Based on the results:(1)Vapor thermal resistance was dominant at low heating power and decreased with increasing heating power.The vapor flow inside the heat pipe developed from the laminar to the turbulent phase,whereas the liquid phase in the heat pipe was always laminar.(2)The vapor pressure drop caused by bending was approximately 22-23%of the total,and the bending effect on the liquid pressure drop could be ignored.(3)The Marangoni effect reduced the capillary limit by hindering the liquid reflux,especially at low vapor temperatures.Without considering the Marangoni effect,the capillary limit of the lithium heat pipe was overestimated by 9%when the vapor temperature was 1400 K.(4)The total thermal resistance of the heat pipe significantly increased with increasing adiabatic length when the vapor tempera-ture was low.Further,the wick dryness increased with increasing adiabatic length at any vapor temperature.Such findings improve on current knowledge for the optimal design and safety analysis of a heat pipe reactor,which adopts ultra-long lithium heat pipes.  相似文献   

8.
The flow and heat transfer characteristic of turbulent flow in typical 4 and 7 rod bundles in ocean environment is investigated theoretically. In ocean environment, the periodic variation of secondary flow in 7 rod bundles is not obvious. Because of the velocity oscillation, there is a periodic heat accumulation on the tube wall. And the restriction of the channel wall on the rolling motion is considerable. In 7 rod bundles, because of the restriction of the channel wall, the effect of the additional force perpendicular to flowing direction is limited, and the turbulent flowing and heat transfer is mainly determined by the axial turbulent intensity and inlet velocity. However, in the 4 rod bundles, the restriction of the channel wall is small. The effect of the additional force perpendicular to flowing direction on the flowing and heat transfer is significant. And the additional force perpendicular to flowing direction can also affect the Reynolds stress.  相似文献   

9.
非能动余热排出热交换器流动和传热数值模拟   总被引:1,自引:0,他引:1  
非能动余热排除系统(Passive Residual Heat Removal system,PRHR)是非能动核电厂的重要安全设施,在全厂断电事故下,大部分的堆芯衰变热是通过PRHR热交换器传递至内置换料水箱(In-containment Refueling Water Storage Tank,IRWST)。但PRHR热交换器属于大型非稳态换热器,其传热机理十分复杂。基于PRHR系统的重要性和复杂性,有必要研究PRHR系统的流动和传热特性。利用计算流体动力学(Computational Fluid Dynamics,CFD)软件针对非能动堆芯冷却系统试验装置中的PRHR系统进行建模计算,分析了PRHR热交换器及IRWST的流动和传热特性,发现IRWST内部沿垂直高度上呈现明显的温度分层现象,温度沿水平方向的分布趋于均匀;IRWST内部的流动主要是沿着C型传热管竖直段向上流动,流速逐渐增大,但在两相阶段,水箱上部区域流动明显增强;C型传热管上部水平段和竖直段上部区域的换热系数要明显高于其它区域,且在上部水平段与竖直段连接弯管处换热系数最大,在两相阶段,上部区域的换热系数明显增大。  相似文献   

10.
空间放射性同位素电池发展回顾和新世纪应用前景   总被引:13,自引:0,他引:13  
迄今为止,美俄两国已向空间发射了80多台空间核电源(包括同位素电池和反应堆电源)。重点回顾了20世纪放射性同位素电池的研发历史和空间发射现状;概括介绍了目前放射性同位素温差发电器(RTG)业已达到的技术水平和提高热电转换效率的最近动向;综述了美国、俄罗斯和欧洲航天局在21世纪初期(20001/2015)使用RTG的空间和太阳系探索计划,展现了RTG的广阔应用前景。  相似文献   

11.
The power densities present within a fusion device and its heating systems require the use of high heat flux (HHF) devices to sustain power densities >10 MW/m2 in steady state. One such device, known as the Hypervapotron, uses internal water cooling along with a series of fins and cavities perpendicular to the flow to maximise the heat transfer capability. UKAEA, in collaboration with Cranfield University, have initiated a study whereby computational fluid dynamics (CFD) software will be used to predict the variation of heat transfer coefficients (HTC) throughout the Hypervapotron, allowing accurate calculations of both thermal and thermo-mechanical performance. In this paper, the first steps in this process are presented. In particular, different turbulence models are assessed and best practices identified for predicting single phase flow and heat transfer within Hypervapotron-sized cavities.  相似文献   

12.
简要介绍了弧矢聚焦双晶单色器的作用及结构原理,根据设计指标确定了水冷晶体衍射面及外形尺寸,分析了高热负载下水冷晶体的热变形,根据国外经验采用直接水冷却法进行高热负载的热缓释,设计了用于直接水冷却的刻槽晶体及冷却结构,根据设计完成了晶体的材料选择、定向切割、冷却水槽的刻制等加工工艺,最终完成了适用于弧矢聚焦双晶单色器的直接水冷分光晶体的加工,该晶体能承受大于0.5W/mm^2的热负载。  相似文献   

13.
Cyclotron generated MeV protons were used to evaluate the mechanical behavior such as tensile strength and elongation of ITO/aluminum-coated Kapton that is known to be one of the most useful polymers for space missions. The mechanical properties (tensile strength and elongation) of specimens irradiated with high-energy protons were lower then those irradiated with low energy protons. A considerable increase in the mechanical properties was found at irradiation with lower fluencies that is explained by the unique characteristics of the molecular structure of Kapton. The ITO and aluminum coatings on Kapton, while contributing to the mechanical strength of the coated Kapton, were found to be affected by the proton irradiation.  相似文献   

14.
In this study, the 3D flow and heat transfer characteristics in rod bundle channels of the super critical water-cooled reactor were numerically investigated using CFX codes. Different turbulent models were evaluated and the flow and heat transfer characteristics in different typical channels were obtained. The effect of pitch-to-diameter ratio (P/D) on the distributions of surface temperature and heat transfer coefficient (HTC) was analysed. For typical quadrilateral channel, it was found that HTC increases with P/D first and then decreases significantly when P/D is <1.4. There exists a “flat region” at the maximum value when P/D is 1.4. If P/D is larger than 1.4, heat transfer deterioration (HTD) occurs as main stream enthalpy is quite small. Furthermore, the HTD under low mass flow rate and the non-uniformity of circumferential temperature were also discussed.  相似文献   

15.
Friction and heat transfer characteristics of pulsating flow induced by rolling motion are experimentally studied. A series of single-phase forced circulation flow experiments are conducted in a vertical narrow channel. In the present study the flow rate is adjusted through control the impeller rotator speed of the pump. The results show that the flow rate pulsation simultaneously with the rolling motion and the relative amplitude of the flow rate pulsation decreases with the increasing flow rate. Accordingly, the relationships between the relative pulsation amplitude of friction factor, heat transfer coefficient and flow rate are classified. Therefore, the correlations have been developed to calculate the friction and heat transfer coefficient based on the relative pulsation amplitude of the flow rate.  相似文献   

16.
Using the source-based SIMPLE algorithm based on a fixed grid method, a two-dimensional numerical model for a convection-diffusion controlled mushy region phase-change problem was developed to investigate the heat transfer characteristics of LIVE L4 melt pool subjected to a partial solidification process in a Pressurized Water Reactor (PWR) lower plenum during a hypothetical severe accident. For the binary non-eutectic mixtures of L4 melt, a linear liquid fraction temperature relationship was implemented on the calculations of the velocity and enthalpy in the mushy zone. The effect of fluid flow in the melt pool was analyzed, and numerical results for the cases with and without phase change model were calculated to investigate the effects of solidification on the heat transfer characteristics of L4 melt pool. Numerical results indicated that the phase-change model could well predict the main parameters of melt pool, e.g. the melt pool temperatures, heat flux through the melt pool, and the crust thickness. Results also indicated that the predicted Nu number without solidification was overestimated by about 12%, compared with that with solidification.  相似文献   

17.
An analytical model of fluid flow and heat transfer of a Nuclear Thermal Rocket (NTR) engine concept is presented. The engine is based on the direct conversion of the kinetic energy of the fission fragments (FFs) into the propellant enthalpy. The FFs can escape from an extremely thin layer of fissionable material: a sufficiently large surface coated with few micrometers of Americium 242m, confined by a neutron moderator-reflector, may become a critical reactor.Three dimensional coupled CFD-Monte Carlo simulations have already been presented in Di Piazza and Mulas (2006). In this paper, an analytical integral 1-D model of fluid dynamics and heat transfer is built in order to foresee the performances on the basis of simple, physically founded correlations. The Peclet number has been identified as the main governing parameter of the system, and theoretically based correlations have been found for the thermodynamic efficiency of the engine and for the specific impulse. The correlations show a good agreement with numerical results presented in Di Piazza and Mulas (2006) from fully coupled 3D CFD-Monte Carlo calculations.  相似文献   

18.
The main purpose of this paper is to investigate numerically the effects of solidification on the heat transfer characteristics of the liquid metal layer, for use in accident analyses. The situation is very similar to an overlying liquid melt pool that could be fooned in the reactor lower head during the late phase of a severe nuclear accident. Based on a computational model, MPCOOL, the numerical predictions were then assessed through a comparison with the experimental data that was obtained with various boundary temperature conditions and geometrical aspect ratios, especially for the Ra-Nu relationship. For the cases with solidification, the results of the comparison show that(a) the computational model does show a good agreement with heat transter rates inferred from the experimental data, with a few exceptions at the Ra numbers which suggest a turbulent transport; and also (b) the computational model underpredicts the heat transfer rates by about 6% than that inferred from the experimental data when it is integrally evaluated with the Ra-Nu correlation. The foregoing results are mainly due to the currently limited applicability of the computational model up to the laminar-to-turbulence transition flows and its application to the turbulence flows because it is always subjected to a model uncertainty between the laminar and turbulence. Next, an additional comparison for the cases with and without solidification was made to examine the effects of the solidification on the energy partition within the liquid metal layer and its effects on the directional heat transfer rates. The results of the comparison show that the computational model for the case without solidification predicts higher heat transfer rates by about 15% than when solidification is included, but there isn't any experimental data that directly supports this trend.  相似文献   

19.
钍燃料的利用对于缓解核燃料资源短缺具有重要意义,坎杜型反应堆(Canadian Deuterium Uranium,CANDU)在堆芯布置、中子利用效率及先进燃料循环方面具有较高的灵活性,使得其在CANDU反应堆中引入钍燃料循环更具现实意义。CANDU型反应堆中钍基燃料应用关键基础技术研究是加拿大与我国正在开展的合作课题,其中开发自主的CANDU堆堆芯热工水力设计和安全分析程序是钍基燃料应用必不可少的设计工作之一。本文针对CANDU型反应堆热传输系统结构特点,采用FORTRAN程序设计语言开发了适用于CANDU型反应堆热传输系统的热工水力瞬态分析程序CANTHAC(CANDU Thermal-Hydraulic Analysis Code)。利用CANTHAC对钍基先进CANDU堆(Thorium-based Advanced CANDU Reactor,TACR)进行了瞬态分析,计算工况包括满功率稳态、无保护蒸汽发生器(Steam Generator,SG)二次侧给水温度降低事故及完全失流事故。其中,满功率稳态计算结果与清华大学设计的钍基先进CANDU堆TACR设计值吻合较好,相对误差不超过2%,在可接受范围内;无保护SG二次侧给水温度降低事故及完全失流事故在计算条件下所得的燃料温度及系统压力等关键热工水力参数均在安全限值内,满足安全准则要求。程序为模块化编程,便于移植和改进,具有一定的通用性,为进一步研究工作奠定了基础。  相似文献   

20.
为获得核数据测量所需的束斑形状及较低的实验本底,反角白光中子源需通过准直器对束流进行刮束准直。以中子开关为例,根据相关要求确定了整体的设计方案。通过将挡块一分为二的设计,解决了小直径深孔加工的难题。利用有限元分析软件,优化了真空盒的外形结构及密封方式。针对挡块的工作环境,搭建了可用于真空的高精度耐辐射移动平台。经测试,中子开关的主要技术指标均满足要求,说明设计合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号