首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 93 毫秒
1.
R290/CO2复叠式制冷系统的性能实验   总被引:3,自引:0,他引:3  
通过对R290/C02复叠式制冷系统的性能实验,对低温循环用CO2作为制冷工质,高温循环分别用R22和R290为制冷工质的性能进行比较,结果表明,随着蒸发温度的升高,冷凝温度的降低,R290/CO2复叠式制冷系统的最佳质量流量比增大,COP增加。随着高温循环压缩机入口温度的升高,R290压缩机的功耗略高于R22压缩机的功耗,R290循环的COPh要高于R22循环的COPh。结果表明自然工质R290/CO2复叠式制冷系统具有很好的发展前景。  相似文献   

2.
利用熵产最小法分析R290/CO2复叠式制冷循环   总被引:1,自引:0,他引:1  
介绍了低温环境下采用自然工质R290和CO2的复叠式制冷循环,用熵产最小法对R290/CO2复叠式低温制冷循环进行了分析,利用熵产最小法确定R290/CO2复叠式低温制冷循环的最佳中间温度。为提高R290/CO2复叠式低温制冷循环的效率,应减少蒸发器、冷凝器和冷凝蒸发器的传热温差,可以看出R290/CO2的复叠式制冷循环在低温制冷条件下有很好的发展前景。  相似文献   

3.
宁静红  彭苗  李慧宇 《制冷》2006,25(1):57-59
介绍了一种新型自然工质R290/CO2复叠式超市制冷系统,分析了R290/CO2复叠式制冷循环用于超市制冷系统的原理、能效等问题,环保R290/CO2复叠式超市制冷系统有着很好的应用前景。  相似文献   

4.
针对R290的性能特点和管内两相流的冷凝换热特性,设计并制造了R290/CO2复叠式制冷循环中的R290水冷式冷凝器,为自然工质R290/CO2复叠式制冷循环系统的研究和实际应用奠定基础。  相似文献   

5.
王亮  刘妮 《制冷技术》2008,(4):58-60
本文对低温级以CO2为工质的超市复叠式制冷系统进行了热力学理论分析,计算了不同蒸发温度、冷凝温度和不同传热温差下的COP,并与传统的超市复叠制冷循环进行对比分析。结果发现自然工质CO2/NH,复叠制冷系统的性能效率为最好,而R290/CO2复叠制冷系统的COP与使用传统工质的相当。因此,将自然环保工质复叠式制冷系统应用于小型超市具有很好的应用前景。  相似文献   

6.
对环保型R290/CO2复叠式低温制冷系统的性能进行实验,得出R290循环的COP要比CO2循环的COP高,CO2压缩机的吸气温度对CO2压缩机排气温度的影响较明显.CO2低温循环中,随着温度的降低,制冷工质的粘性对管路的流动阻力损失影响不大.制冷系统的压力和流量的稳定性非常好,温度的稳定性能够满足实验精度要求.  相似文献   

7.
二氧化碳复叠式制冷循环的热力性能分析   总被引:2,自引:0,他引:2  
分析了CO2的热力特性和CO2复叠式制冷循环的优势及应用现状,概述了复叠式制冷循环的原理及组成,从理论和实验两个方面对NH3/CO2和R290/CO2复叠式制冷循环进行了分析,得出了COP以及高低压级质量流量比与蒸发温度、冷凝温度、冷凝蒸发温差之间的关系.  相似文献   

8.
本文针对所建立的新型R404A/CO2复叠式制冷设备进行了理论研究,该系统可提供零下40℃以下的低温环境。根据R404A和CO2的物性特征及复叠式循环流程,通过数值模拟寻找一定工况下CO2低温级的最佳冷凝温度及二者的最佳质量流量比,分析冷凝蒸发器的工作温度、CO2侧蒸发温度、R404侧的冷凝温度等对R404A/CO2复叠式系统COP的影响。结果表明,为了提高循环效率并保证循环的安全运行,应尽可能地升高低温段蒸发温度、降低高温段冷凝温度,缩小冷凝蒸发器的传热温差,环保工质R404A和CO2的复叠式制冷系统在低温制冷条件下有良好的发展前景。  相似文献   

9.
对R290/CO2自然工质复叠式制冷系统低温冷冻箱进行设计和试验,冷冻箱内的温度在2个小时内平稳下降54.5℃,并保持在-41℃,这说明冷冻箱的设计合理,温度的稳定性较好,为自然工质R290/CO2复叠式制冷系统的推广应用打下了一定的基础。  相似文献   

10.
CO2-NH3低温复叠式制冷循环的热力学分析与比较   总被引:13,自引:0,他引:13  
本文介绍了一种用于低温环境的采用自然工质CO2-NH3的复叠式制冷循环,介绍和分析了CO2和NH3的物性特征,并且进行了该复叠式制冷循环的热力学理论分析,通过计算得出了不同蒸发温度下的最佳低温循环的冷凝温度和最佳流量比。通过与R13-R22和NH3-NH3复叠式循环的比较,可以看出CO2-NH3的复叠式制冷循环在低温制冷条件下有明显优势。  相似文献   

11.
提出一种新型水冷自复叠制冷循环方式,用冷凝分离器代替传统循环的冷凝器和相分离器,在冷凝分离器中同时完成了高沸点工质的冷凝及高沸点工质与低沸点工质的分离。对采用这种冷凝分离器的水冷自复叠制冷循环方式的R22/R23、R290/R170、R134a/R23、R134a/R170四种工质对进行了循环特性研究。在自行搭建的水冷自复叠制冷系统实验台上进行了R22/R23、R134a/R23两种工质对的实验研究。结果表明,在相同工况下,R22/R23自复叠制冷系统的COP要高于R134a/R23自复叠制冷系统;和传统的自复叠系统相比,采用冷凝分离器的水冷自复叠制冷循环COP明显提高,提升率达到60%~100%。  相似文献   

12.
本文提出了以Laval喷管为核心部件的超音速两相膨胀机的概念,构建了以天然制冷剂CO2为工质的超音速两相膨胀制冷循环模型并对其进行理想循环热力学分析和模拟计算研究。结果表明:超音速两相膨胀机入口压力、入口温度和旋流分离段出口压力均对系统制冷性能有影响;在空调温区工况,CO2超音速两相膨胀制冷循环COP为6.69,是现有制冷性能相对最优的CO2跨临界制冷循环COP的1.63倍,且大幅降低系统压力;气液分离时液相速度损失对系统制冷性能有影响,系统COP由9.56减至6.01,相对卡诺效率由0.95减至0.60,但仍然保持在较高水平。通过初步的热力学分析和模拟计算研究表明,新型CO2超音速两相膨胀制冷循环具有较好的原理可行性和发展前景。  相似文献   

13.
机械过冷CO_2跨临界制冷循环性能理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用蒸气压缩制冷循环(辅助循环)对CO_2跨临界制冷循环气体冷却器出口的CO_2流体进行冷却,可减小节流不可逆损失,提高循环性能。本文对机械过冷CO_2跨临界制冷循环进行热力学循环分析,结果表明:当在最优排气压力和最优过冷度两个参数条件下,循环存在最大COP。环境温度越高、蒸发温度越低,采用机械过冷方法使循环性能提升越显著,相对传统CO_2制冷循环,通过辅助循环可显著提高循环COP,降低CO_2排气压力和温度。相对CO_2压缩机,辅助循环压缩机的功耗较少。分析了辅助循环中采用11种不同制冷剂的性能,可得除R41外,其它10种工质对循环整体COP的提升程度差异不明显。综上所述,机械过冷CO_2跨临界制冷循环更适用于环境温度较高、蒸发温度较低的场合。  相似文献   

14.
This paper proposes a modified vapor-compression refrigeration cycle (MVRC) system operating with the zeotropic mixture R290/R600a for domestic refrigerator-freezers. In the MVRC system, a phase separator is introduced to enhance the overall system performance. A theoretical energy and exergy analysis on the performance of the MVRC is carried out by using the developed mathematical model, and then compared with that of the traditional vapor-compression refrigeration cycle (TVRC) operating with the refrigerant R600a and the zeotropic mixture R290/R600a, respectively. According to the simulation results of these two cycles, the MVRC can give the most excellent performances in the COP (coefficient of performance), the volumetric refrigeration capacity, the total exergy destruction and the exergetic efficiency under the same given operating conditions. Therefore, the performance characteristics of the MVRC may show its promise in domestic refrigerator-freezer applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号