首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this letter, the effects of annealing on structural and optical properties of Ca doped ZnO nanoparticles have been investigated. X-ray diffraction analysis reveals that the prepared particles are in hexagonal wurtzite structure and formation of secondary phase related to the Calcite was found after thermal annealing. UV–Vis measurements show free exciton absorption band appeared at 372 nm and increase of band gap with annealing of samples. Room temperature photoluminescence (PL) spectrum of the prepared Ca doped ZnO nanoparticles shows bands which belong to the near band edge emission at 377 nm and green emission at 556 nm. Annealed samples exhibit enhancement in the blue emission band. Raman spectra show the increment in the electron–phonon coupling value with annealing.  相似文献   

2.
In the present work, high purity ZnO nanorods were synthesized by solid state reaction method at different annealing temperatures (250–400 °C). The structural, morphological and optical characteristic of the ZnO nanorods were studied. X-ray diffraction results confirmed that the ZnO nanorods have Wurtzite structure with high crystal quality. The grain size has increased from 23 to 27 nm with increasing temperature. The scanning electron microscopy and high resolution-transmission electron microscopy photographs showed the formation of ZnO nanorods. The bonding natures of the synthesized nanorods were analyzed by Fourier transform infra-red spectroscopy. The blue shift in the absorption edge was observed from the UV–Vis spectrum. The photoluminescence spectra showed two emission peaks corresponding to blue and red emissions. The photocatalytic performance of these nanorods was evaluated using methyl violet dye. The result showed that photocatalytic performance is highly depends on the morphology of the nanorods.  相似文献   

3.
在氯化钠存在下,以硫酸锌和氢氧化钠为原料,采用一步室温固相法制备了纳米氧化锌.XRD、TEM分析结果表明:所得纳米氧化锌为棒状,直径约10nm左右,长度约100~160nm.利用紫外-可见分光光度计测试了光吸收性能,发现ZnO纳米棒对200~380nm波长范围的光有很强吸收性,在可见光范围内,也有较强的吸收.ZnO纳米棒在550nm左右具有较弱的荧光发光峰且ZnO纳米棒较普通氧化锌发光峰波长发生了明显的红移.  相似文献   

4.
The cathodoluminescence (CL) properties including intensity and distribution of the band to band and defect emission of the flower-like ZnO, ZnO/ZnS core-shell and tube-like ZnS nanostructures have been investigated. It is indicated that the Ultraviolet (UV) emission at 380 nm of the flower-like ZnO nanostructures due to the band to band emission is weaker than their yellow emission at 600 nm induced by interstitial oxygen. Moreover, the UV emission of the ZnO nanorods unevenly distributes from the tip to the end. The UV emission on the tip is stronger than that of others due to the waveguide. On the contrary, the yellow emission at 600 nm is uniform. Furthermore, the UV emission of ZnO has been greatly enhanced and the yellow emission has been inhibited by the formation of ZnO/ZnS core-shell nanostructures in the sulfuration process due to the elimination of interstitial oxygen. However, the polycrystalline tube-like ZnS nanostructures shows the uniform and weak defect emission due to S vacancies.  相似文献   

5.
Highly crystalline ZnO nanorods with diameters ranging from 5 to 57 nm were prepared by a seed-mediated solution method. With a diameter reduction, the lattice volume of ZnO nanorods increased and c/a ratio decreased, in apparent contradiction to what was observed in spherical ZnO nanocrystals. All ZnO nanorods showed a strong yellow emission without the UV or green emissions that had been observed for ZnO nanostructures prepared by other methods. For larger diameters, the yellow emission exhibited an abnormal red shift, which was associated with the lattice variations in the nanoscale structure and the resulting band modifications. The size-induced band modifications were also confirmed by the photocatalytic activity of ZnO nanorods, which have an optimum diameter (approximately 30 nm) for the photodegradation of Rhodamine B dye solution.  相似文献   

6.
Ag-decorated ZnO nanorods were synthesized by thermal evaporation of a mixture of ZnO and graphite powders at 900 °C followed by wet Ag coating and thermal annealing. The ZnO nanorods had a rod-like morphology with a relatively uniform width and length. The widths and lengths of the nanorods ranged from 50 to 300 nm and up to a few hundred micrometers, respectively. The diameters of the Ag particles on the nanorods ranged from 10 to 100 nm. The dependence of the photoluminescence properties of Ag-decorated ZnO nanorods on the postannealing atmosphere was examined. Annealing resulted in an increase and decrease in the near band edge (NBE) and deep level (DL) emission intensities of Ag-coated ZnO nanorods, respectively, whereas both the NBE and DL emission intensities of uncoated ZnO nanorods were increased by annealing. The intensity ratio of NBE emission to DL emission of the Ag-coated ZnO nanorods was increased ~15-fold by hydrogen annealing. The underlying mechanism for NBE emission enhancement and DL emission suppression of Ag-coated ZnO nanorods by postannealing is discussed based on the surface plasmon resonance effect of Ag.  相似文献   

7.
Ni doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Ni:Zn atomic ratio from 0 to 5 %. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and nickel acetate tetrahydrate followed by heat treatment at 65 °C under refluxing using methanol as a solvent. X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a wurtzite structure with crystal size of 4–11 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 600–170 nm. High resolution transmission electron microscopy image shows that each sphere is made up of numerous nanoparticles of average diameter 4 nm. The XRD patterns, Scanning electron microscopy and transmission electron microscopy micrographs of doping of Ni in ZnO are confirmed the formation of micro-spheres. Furthermore, the UV–vis. spectra and photoluminescence spectra of the Ni-doped ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.55–3.36 eV by the use of the dopants. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.  相似文献   

8.
The hexagonal wurtzite structure of the synthesized undoped and cesium (Cs) doped zinc oxide (ZnO) nanorods were confirmed with X-ray diffraction patterns. Further analysis with field emission scanning electron microscope images and energy dispersive X-ray spectra revealed the c-axis oriented hexagonal morphology of the samples with chemical composition. Optical poling through 337 nm nitrogen laser has been adopted to enhance the nonlinear optical properties. When the power density of the fundamental laser beam from Nd:YAG laser of 1064 nm matched with the band edge of the samples, resonant absorption takes place leading to the enhanced NLO properties. The interstitial occupancy of the dopants in 3 and 5 mol% CsZnO increases the band tailing in the forbidden energy gap. The minimum of Urbach energy calculated from UV–Vis absorption spectra corresponding to 1 mol% CsZnO revealed more ordering in the sample. More enhanced second and third order NLO effects were observed in this sample having larger crystallite size, lesser diameter, lesser band gap, minimum urbach energy and higher electron–phonon interaction.  相似文献   

9.
In the present study photoluminescence behavior of ZnO and ZnO@CdS core–shell nanorods film has been reported. ZnO nanorods were grown on the glass coated indium tin oxide (ITO) surface by seeding ZnO particle followed with nanorods growth. These nanorods were coated with CdS by chemical bath deposition techniques to have ZnO@CdS thin film and further annealed at 200 °C for their adherence to the ITO surface. The coating was characterized for surface morphology using SEM and optical behavior using UV–visible spectrophotometer. Energy dispersive X-ray (EDX) was used for compositional analysis and time resolve photoluminescence decay for excitons life time measurement. The absorption spectrum reveals that the absorption edge of ZnO@CdS core–shell heterostructure shifted to 480 nm in the visible region whereas ZnO nanorods have absorption maxima at 360 nm. The excitons lifetime of ZnO@CdS was found to be increased with the thickness of the CdS layer on ZnO nanorod. These ZnO@CdS core–shell nanostructures will be of great use in the field of photovoltaic cell and photocatalysis in a UV–visible region.  相似文献   

10.
In the present work, we have interested to understand the influence of cobalt doping on the various properties of ZnO nanoparticles, a series of samples were successfully synthesized using sol–gel auto-combustion method. The effects of Co doping on the structural and optical properties of ZnO:Co nanoparticles were investigated using X-ray diffraction (XRD), scanning electron microscopy, fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible spectroscopy, photoluminescence spectroscopy and vibrating sample magnetometer (VSM). With the sensitivity of the XRD instrument, the structural analyses on the undoped and Co-doped ZnO samples reveal the formation of polycrystalline hexagonal-wurtzite structure without any secondary phase. FTIR spectra confirm the formation of wurtzite structure of ZnO in the samples. The optical absorption spectra showed a red shift in the near band edge which indicates that Co2+ successfully incorporated into the Zn2+ lattice sites. The room temperature PL measurements show a strong UV emission centered at 392 nm (3.16 eV), ascribed to the near-band-edge emissions of ZnO and defect related emissions at 411 nm (violet luminescence), 449 nm (blue luminescence) and 627 nm (orange-red luminescence), respectively. Magnetic study using VSM reveals that all the samples are found to exhibit room temperature ferromagnetism.  相似文献   

11.
In the present work, the effect of annealing temperature on the luminescence and photoconductivity properties of ZnO nanoparticles (NPs) has been investigated. The ZnO NPs have been prepared at low temperature by a simple one step solid state reaction method using ZnSO4·7H2O as a starting precursor. X-ray diffraction results show, the prepared samples have a hexagonal wurtzite structure of ZnO NPs. FE-SEM reveals that the prepared ZnO nanoparticles have perfect spherical shape with little agglomeration. UV–visible absorption spectrum of as-prepared ZnO sample shows an absorbance peak at ~372 nm (~3.32 eV), which is blue shifted as compared to bulk ZnO (~386 nm). The annealed sample exhibits red shift of absorption peak. The photoluminescence spectra of as-prepared sample as well as annealed samples show one emission peak in UV region, and violet, blue, blue-green and green emissions in visible region. The sample annealed at 650 °C results in a significant reduction in luminescence as compared to that of the sample annealed at 450 °C. The photoconductivity properties such as voltage dependence of photocurrent, growth and decay of photocurrent as well as wavelength dependence of photocurrent have been studied in detail.  相似文献   

12.
Large yield and low temperature growth of nanostructures are key requirements for fulfilling the demand of large scale applications of nanomaterials. Here, we report a highly efficient chemical method to synthesize high quality hexagonal ZnO nanoparticle and nanorods utilizing the low temperature oxidation of metallic zinc powder in the presence of an appropriate catalyst. This one-step method has advantages such as low temperature (90 degrees C) and atmospheric pressure synthesis and a high yield (> 90%). Microstructure and optical properties of the as-synthesized ZnO nanoparticles are found to be identical or better than those of the commercial ZnO nanopower (Sigma-Aldrich). In particular, in comparison to the commercial nanopowder the as-grown ZnO nanorods and nanoparticles exhibit stronger UV absorption at 376 nm and intense UV photoluminescence emission at -382 nm, with negligible defect emission band. This method is suitable for large-scale production of nanosized ZnO and could be extended for the synthesis of other metal oxides.  相似文献   

13.
SnS nanorods and SnS/ZnO nanocomposite have been synthesized by chemical method. Structure and phase purity of the samples were confirmed by powder X-ray diffraction. Transmission electron microscope image of SnS nanorods showed the average diameter of nanorods was about 85 nm and length was several micrometers. Transmission electron microscope image of SnS/ZnO nanocomposite showed the average particle size of ZnO nanoparticle was about 12 nm. The formation of SnS/ZnO nanocomposite was confirmed by elemental analysis using energy dispersive X-ray spectroscopy. From the microRaman spectrum of SnS/ZnO nanocomposite, it was observed that the intensity of B2g mode of SnS nanorods decreased dramatically compared to that of pure SnS nanorods, since the surface of the SnS nanorods were coated with ZnO nanoparticles. Both direct and indirect band gap transitions were observed for SnS nanorods from the optical absorption spectrum and the optical absorption spectrum of SnS/ZnO nanocomposite showed absorption in the visible region.  相似文献   

14.
Cd x Gd1?x S (x = 0–0.15) nanorods have been synthesized by solvothermal technique. X-ray diffraction study reveals that pure and Gd-doped CdS nanorods exhibits hexagonal wurtzite structure. Transmission electron microscopy reveals nanorods like morphology of synthesized CdS having 14 and 26 nm size of pure and 15 % doped CdS nanorods. UV–Visible absorption study confirms the blue shift in the energy band energy due to the quantum confinement effects. Photoluminescence spectra confirm the defect free nature of the synthesized nanorods with peaks emerging around 528 and 540 nm due to the green emission. The magnetic study shows that the pure and Gd-doped CdS nanorods exhibits ferromagnetic character and the magnetisation increased by five times from 0.074 to 0.422 emu/g upon Gd-doping.  相似文献   

15.
Annealed ZnO thin film at 300, 350, 400, 450 and 500 °C in air were deposited on glass substrate by using pulsed laser deposition. The effects of annealing temperature on the structural and optical properties of annealed ZnO thin films by grazing incident X-ray diffraction (GIXRD), transmittance spectra, and photoluminescence (PL) were investigated. The GIXRD reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye–Scherrer equation and the average grain size were found to be in the range 5.22–10.61 ± 0.01 nm. The transmittance spectra demonstrate highly transparent nature of the films in visible region (>70 %). The calculation of optical band gap energy is found to be in the range 2.95–3.32 ± 0.01 eV. The PL spectra shows that the amorphous film gives a UV emission only and the annealed films produce UV, violet, blue and green emissions this indicates that the point defects increased as the amorphous film was annealed.  相似文献   

16.
Ti(Sn)-doped single-crystalline ZnO nanorods with an average diameter of 20 nm and length up to nearly 1 μm were synthesized by a facile ultrasonic irradiation-assisted alcoholthermal method without involving any templates. Photoluminescence spectra of the Ti-doped ZnO nanorods were measured at room temperature and three emitting bands, being a violet emission at 400-415 nm, a blue band at 450-470 nm and a green band at around 550 nm, were detected. The emission intensities of the Ti-doped ZnO nanorods enhance gradually with increasing the doping concentrations. As to the Sn-doped ZnO nanorods, the green emission shifts to 540 nm and the emission intensities increase first but decrease later with increasing the doping concentrations.  相似文献   

17.
A simple and novel catalyst free (00l) oriented zinc oxide (ZnO) nano-structures were synthesized on quartz substrate by pulsed laser deposition (PLD). The effects of substrate temperature on structural and optical properties of these nanostructures were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and spectroscopic ellipsometry. XRD showed that the ZnO nanostructures had c-axis oriented hexagonal wurtzite crystal structure. Crystallite sizes were found to increase as substrate temperature increases. An AFM measurement confirms the grain formation and increase in surface roughness at higher substrate temperature. Optical band gap of these ZnO nanostructures was calculated using transmittance spectra in UV–Vis region and found to decrease from 3.24 to 3.21 eV as substrate temperature is increased from 500 to 800?°C. PL spectra show that all the peaks in UV region around 389 nm; 3.18 eV. The decrease in band gap may be attributed to decrease in oxygen vacancies at higher substrate temperature and may be useful for different applications.  相似文献   

18.
Vertical well-aligned Cu-doped ZnO nanorods were successfully synthesized by chemical bath deposition (CBD) method on low cost and flexible polyethylene naphthalate (PEN) substrate. The structural and optical investigations exhibited the high quality of the Cu-doped ZnO nanorods on a flexible PEN substrate. The metal-semiconductor-metal (MSM) configuration was used to fabricate UV photodetector based on the Cu-doped ZnO nanorods grown on PEN substrate. Under a 5 V applied bias, the values of dark current and photocurrent of the Cu-doped ZnO nanorods photodetector were 14.9 µA and 3.27 mA, respectively. Meanwhile, calculated photocurrent gain of the UV photodetector was 219 at 5 V bias voltage. Upon exposure to 365 nm UV light, the UV device exhibited fast response time and recovery time of 0.317 and 0.212 s, respectively, at a bias voltage of 5 V.  相似文献   

19.
Zinc oxide thin films have been spun coated on p-Si (100) substrates by sol–gel route. These films were annealed at different annealing temperatures from 300 to 1,000 °C in the oxygen ambient. In this way a suitable annealing temperature window for the sol–gel derived ZnO films exhibiting minimum defects (points and dislocations) and better quality (crystal and optical) was investigated. The structural and optical features of ZnO thin films have been examined by X-ray diffraction, atomic force microscopy, UV–Vis spectroscopy, and photoluminescence spectra. The results revealed that the crystallization in the films initiated at 300 °C, improved further with annealing. All the deposited films exhibited wurtzite phase with c-axis orientations. The variations in the position of characteristic (002) peak, stress, strain and lattice parameters are investigated as a function of annealing temperature. The optical band gap is not significantly affected with annealing as observed by UV–Vis transmission spectroscopy. The Photoluminescence spectra exhibited three luminescence centers. The near band edge esmission was observed in UV region which enhanced with the heat treatment, is an indication of improvement in the optical quality of films. The other two visible emissions are related to native defects in ZnO lattice were appeared only for higher annealing (≥700 °C).  相似文献   

20.
The article investigates the structural and optical properties of ZnPc/PbSe hybrid multilayer (HML) structure deposited by using thermal evaporation technique. The X-ray diffraction pattern reveals the formation of ZnPc–PbSe composite and strain induced quantum size effect. Scanning electron microscope image shows the spherical grains for as-deposited film and nanorod like structure for the annealed film. The rods are oriented along one direction and stacking axis changes with the function of annealing temperature. The optical spectra show strong absorption in UV–Visible region and the optical absorption edge was red shifted for annealed samples. The luminescence properties were enhanced with broad emission in the range of 375–400 nm in HMLs. The optical band gap values are calculated and it varies from 3.2 to 3.04 eV with the function of annealing temperature and the band gap splitting was observed for a higher temperature of annealed samples. Strain-induced effect on ZnPc/PbSe HML has been reported using Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号