首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To change the substrate preference of carboxypeptidase Y theputative substrate binding pocket was subjected to random mutagenesis.Based upon the three-dimensional structure of a homologous enzymefrom wheat, we hypothesized that Tyr147, Leu178, Glu215, Arg216,Ile340 and Cys341 are the amino acid residues of carboxypeptidaseY that constitute S1 the binding pocket for the penultimateamino acid side chain of the substrate. We developed a new andgenerally applicable mutagenesis strategy to facilitate efficientscreening of a large number of mutants with multiple changesin carboxypeptidase Y. The key feature is the elimination ofwild type background by introducing a nonsense codon at eachtarget site for subsequent mutagenesis by degenerate oligonucleotides.The entire hypothesized S1 binding pocket and subsets of itwere subjected to saturation mutagenesis by this strategy, andscreening yielded a number of mutant enzymes which have up to150 times more activity (kcat/Km towards CBZ-LysLeu-OH thanthe wild type enzyme. All selected mutants with increased activityhave mutations at position 178. Mutagenesis of positions 215and 216 has virtually no effect on the activity, while mutatingpositions 340 and 341 generally reduces activity.  相似文献   

2.
We had reported engineering of the heme monooxygenase cytochrome P450cam from Pseudomonas putida with the F87W/Y96F/L244A/V247L mutations for the oxidation of pentachlorobenzene (PeCB), a recalcitrant environmental contaminant, to pentachlorophenol. In order to provide further insights into P450 structure, function and substrate recognition, we have determined the crystal structure of this 4-mutant without a substrate and its complex with PeCB. PeCB is bound face-on to the heme, with a weak Fe--Cl interaction. One PeCB chlorine is located in the cavity generated by the L244A mutation, in striking illustration of the role of this mutation in promoting PeCB binding. The structures also show that the P450(cam) oxygen-binding groove between G248 and T252 is flexible and can tolerate significant deviations from their conformations in the wild type without loss of enzyme activity. Analysis of the PeCB binding interactions led to introduction of the T101A mutation to enable the substrate to reorient during the catalytic cycle for more efficient oxidation. The resultant 5-mutant F87W/Y96F/T101A/L244A/V247L is 3-fold more active for PeCB oxidation than the 4-mutant. Polychlorinated benzene binding by the mutants and the partitioning between substrate oxidation and non-productive (uncoupling) side reactions are correlated with the structural data.  相似文献   

3.
Serine endoproteases such as trypsins and subtilisins are knownto have an extended substrate binding region that interactswith residues P6 to P3' of a substrate. In order to investigatethe structural and functional effects of replacing residuesat the S4 substrate binding pocket, the serine protease fromthe alkalophilic Bacillus strain PB92, which shows homologywith the subtilisins, was mutated at positions 102 and 126–128.Substitution of Val102 by Trp results in a 12–fold increasein activity towards succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide(sAAPFpNA). An X-ray structure analysis of the V102W mutantshows that the Trp side chain occupies a hydrophobic pocketat the surface of the molecule leaving a narrow crevice forthe P4 residue of a substrate. Better binding of sAAPFpNA bythe mutant compared with the wild type protein as indicatedby the kinetic data might be due to the hydrophobic interactionof Ala P4 of the substrate with the introduced Trp102 side chain.The observed difference in binding of sAAPFpNA by protease PB92and thermitase, both of which possess a Trp at position 102,is probably related to the amino acid substitutions at positions105 and 126 (in the protease PB92 numbering).Kinetic data forthe variants obtained by random mutation of residues Serl26,Prol27 and Serl28 reveal that the activity towards sAAPFpNAincreases when a hydrophobic residue is introduced at position126. An X-ray diffraction analysis was carried out for the threeprotease PB92 mutants which have residues Serl26-Prol27-Serl28replaced by Met-Ala-Gly(‘MAG’ mutant), Phe-Gln-Ser(‘FQS’ mutant) and Asn-Ser-Ala (‘NSA’mutant). Met 126 and Phel26 in the crystal structures of thecorresponding mutants are fixed in the same hydrophobic environmentas Trp102 in the V102W mutant.In contrast, Asnl26 in the ‘NSA’mutant is completely disordered in both crystal forms for whichthe structure has been determined. According to our kineticmeasurements none of the mutants with Met, Phe, Leu or Val atposition 126 binds sAAPFpNA better than the wild type enzyme.Resultsof the site-directed mutagenesis at position 127 imply thatpossible interaction of this residue with a substrate has almostno effect on activity towards sAAPFpNA and casein.  相似文献   

4.
Experimental and computational analyses were performed on thecorepressor (L-tryptophan) binding site of the trp-repressorof Escherichia coli to investigate the ligandprotein interactions.Gly 85, one of the residues forming the hydrophobic pocket ofthe binding site, was systematically replaced with Ala, Val,Leu and Trp by cassette mutagenesis. Biochemical characterizationshowed that all these mutations caused significant decreasesin tryptophan binding activity. Free energy perturbation calculationswere performed for the mutants and were consistent with theexperimental results. The lack of a side chain at position 85was concluded to be essential for binding the corepressor; thestructure of the binding pocket was suggested to be tight inthe vicinity of Gly85.  相似文献   

5.
A 3D model of the {delta} opioid receptor and ligand-receptor complexes   总被引:1,自引:0,他引:1  
A model for the 3D structure of the transmembrane domain ofthe opioid receptor was predicted from the sequence divergenceanalysis of 42 sequences of G-protein coupled peptide hormonereceptors belonging to the opioid, somatostatin and angiotensinreceptor families. No template was used in the prediction steps,which include multiple sequence alignment, calculation of avariability profile of the aligned sequences, use of the variabilityprofile to identify the boundaries of transmembrane regions,prediction of their secondary structure, optimization of thepacking shape in a helix bundle, prediction of side chain conformationsand structural refinement The general shape of the model issimilar to that of the low resolution rhodopsin structure inthat the TM3 and TM7 helices are most buried in the bundle andthe TM1 and TM4 helices are most exposed to the lipid phase.An initial assessment of this model was made by determiningto what extent a binding site identified using four structurallydisparate high affinity opioid ligands was consistent withknown mutational studies. With the assumption that the pro-tonatedamine nitrogen, a feature common to all opioid ligands, interactswith the highly conserved Aspl27 in TM3, a pocket was foundthat satisfied the criteria of complementarity to the requirementsfor receptor recognition for these four diverse ligands, two selective antagonists (the fused ring naltrindole and the peptideTyr-Tic-Phe-Phe-NH2) and the two agonists lofentanil and BW373U86deduced from previous studies of the ligands alone. These ligandscould be accommodated in a similar region of the receptor. Thereceptor binding site identified in the optimized complexescontained many residues in positions known to affect ligandbinding in G-protein coupled receptors. These results also allowedidentification of key residues as candidates for point mutationsfor further assessment and refinement of this model as wellas preliminary indications of the requirements for recognitionof this receptor.  相似文献   

6.
The acetylcholine-binding protein (AChBP) is homologous to the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) and other members of the Cys-loop family of neurotransmitter receptors. The high-resolution X-ray structures of AChBP mean it has been used as a model from which to understand agonist and antagonist binding to nAChRs. We present here a molecular dynamics (MD) study of AChBP with nicotine and carbamylcholine bound. Our results suggest that the ligand imposes rigidity on the binding pocket residues. The simulations also suggest that the protein undergoes breathing motions with respect to the five-fold axis, a motion that has been postulated to be related to gating in the nAChR. We analyzed the behaviour of the water molecules in and around the binding site and found that they occupied five distinct sites within the binding pocket. Water occupied these sites in the absence of ligand, but the presence of ligand increased the probability that a water molecule would be found in these sites. Finally, we demonstrate how the positions of these waters might be used in the design of new ligands by comparing the positions of these sites with other recent structures.  相似文献   

7.
Beside the interaction of the antigen-presenting major histocompatibility complex with the T-cell receptor, a co-stimulatory signal is required for T-cell activation in an immune response. To reduce immune-mediated graft rejection in corneal transplantation, where topical application of drugs in ointments or eye-drops may be possible, we selected single-chain antibody fragments (scFv) with binding affinity to rat CD86 (B7.2) that inhibit the co-stimulatory signal. We produced the IgV-like domain of rat CD86 as a fusion protein in Escherichia coli by refolding from inclusion bodies. This protein was used as a target for phage display selection of scFv from HuCAL-1, a fully artificial human antibody library. Selected binding molecules were shown to specifically bind to rat CD86 and inhibit the interaction of CD86 with CD28 and CTLA4 (CD152) in flow cytometry experiments. In an assay for CD86-dependent co-stimulation, the selected scFv fragment successfully inhibited the proliferation of T-cells induced by CD86-expressing P815 cells.  相似文献   

8.
Under anaerobic conditions, cytochromes P450 can reductivelydehalogenate heavily halogenated hydrocarbons, such as one-and two-carbon organic solvents. This catalytic capacity hasdrawn attention to the potential use of engineered forms ofP450s in the remediation of contaminated deep subsurface ecosystems.Loida (1994, PhD Thesis, University of Illinois at Urbana-Champaign,IL) and S.G.Sligar (personal communication) have observedrecentlythat an active-site variant of cytochrome P450cam (F87W) dechlorinatespentachloroethane approximately three times faster than thewild-type enzyme. Molecular dynamics simulations have revealedthat the mutant enzyme binding pocket remains smaller, and thatpentachloroethane assumes configurations closer to the heme-Fein the F87W mutant twice as often as in the wild-type enzyme.This result is consistent with a collisional model of dehalogenation,which agrees with experimental observations [Li and Wackett(1993) Biochemistry, 32, 9355–9361] that solutions containingwild-type P450cam dehalogenate pentachloroethane 100 times fasterthan those containing free heme. The simulations suggest thatit is unlikely that Trp87 significantly stabilizes the developingnegative charge on the substrate during carbon-halogen bondreduction. The design of improved microbiai enzymes that incorporateboth steric and electronic effects continues for use in remediatinghalogenated contaminants in situ  相似文献   

9.
The importance of Trp H33 in antibody recognition of DNA containinga central pyrimidine (6–4) pyrimidone photoproduct wasinvestigated. This residue was replaced by Tyr, Phe and Alaand the binding abilities of these mutants were determined bysurface plasmon resonance and fluorescence spectroscopy. Conservativesubstitution of Trp H33 by Tyr or Phe resulted in moderate lossesof binding affinity; however, replacement by Ala had a significantlylarger impact. The fluorescence properties of DNA containinga (6–4) photoproduct were strongly affected by the identityof the H33 residue. DNA binding by both the wild-type and theW-H33-Y mutant was accompanied by a small degree of fluorescencequenching; by contrast, binding by the W-H33-F and W-H33-A mutantsproduced large fluorescence increases. Taken together, thesevariations in binding and fluorescence properties with the identityof the H33 residue are consistent with a role in photoproductrecognition by Trp H33 in the high-affinity antibody 64M5.  相似文献   

10.
The 12 kDa FK506-binding protein FKBP12 is a cis-trans peptidyl-prolylisomerase that binds the macrolides FK506 and rapamycin. Wehave examined the role of the binding pocket residues of FKBP12in protein–ligand interactions by making conservativesubstitutions of 12 of these residues by site-directed mutagenesis.For each mutant FKBP12, we measured the affinity for FK506 andrapamycin and the catalytic efficiency in the cis–transpeptidyl-prolyl isomerase reaction. The mutation of Trp59 orPhe99 generates an FKBP12 with a significantly lower affinityfor FK506 than wild-type protein. Tyr26 and Tyr82 mutants areenzymatically active, demonstrating that hydrogen bonding bythese residues is not required for catalysis of the cis–transpeptidyl-prolyl isomerase reaction, although these mutationsalter the substrate specificity of the enzyme. We conclude thathydrophobic interactions in the active site dominate in thestabilization of FKBP12 binding to macrolide ligands and tothe twisted-amide peptidyl-prolyl substrate intermediate.  相似文献   

11.
Molecular dynamics of the 5-HT1a receptor and ligands   总被引:2,自引:0,他引:2  
A 3-D model of the human 5-HT1a receptor was constructed fromits amino acid sequence by computer graphics techniques, molecularmechanics calculations and molecular dynamics simulations. Themodel has seven -helical membrane spanning segments, which forma central core containing a putative ligand binding site. Electrostaticpotentials 1.4 Å outside the water accessible surfacewere mainly negative on the synaptic side of the receptor modeland at the postulated ligand binding site, and positive in thecytoplasmic domains. The negative electrostatic potentials aroundthe synaptic domains indicate that positively charged ligandsare attracted to the receptor by electrostatic forces. Moleculardynamics simulations of the receptor model with serotonin, ipsapirone,R(–)-methiothepin or S(+)- methiothepin in the centralcore suggested that up to 22 different amino acid residues mayform a ligand binding pocket, and contribute to the specificityof ligand recognition and binding.  相似文献   

12.
Design of fully active FGF-1 variants with increased stability   总被引:1,自引:0,他引:1  
Fibroblast growth factor 1 is a powerful mitogen playing an important role in morphogenesis, angiogenesis and wound healing and is therefore of potential medical interest. Using homologous sequence and structure comparisons, we designed and constructed 16 mutants of FGF-1 with increased thermodynamic stability, as determined by chemical and heat denaturation. For multiple mutants, additive effects on stability were observed, providing mutants up to 7.8 degrees C more stable than the wild-type. None of the introduced mutations affected any FGF-1 biological activities, such as stimulation of DNA synthesis, MAP kinase activation and binding to the FGF receptor on the cell surface. Our study provides a good starting point to improve the stability of FGF-1 in the context of its wide potential therapeutic applications. We showed that a homology approach is an effective method to change the thermodynamic properties of the protein without altering its function.  相似文献   

13.
Monocyte chemoattractant proteins (MCPs) are cytokines that direct immune cells bearing appropriate receptors to sites of inflammation or injury and are therefore attractive therapeutic targets for inhibitory molecules. 11K2 is a blocking mouse monoclonal antibody active against several human and murine MCPs. A 2.5 A structure of the Fab fragment of this antibody in complex with human MCP-1 has been solved. The Fab blocks CCR2 receptor binding to MCP-1 through an adjacent but distinct binding site. The orientation of the Fab indicates that a single MCP-1 dimer will bind two 11K2 antibodies. Several key residues on the antibody and on human MCPs were predicted to be involved in antibody selectivity. Mutational analysis of these residues confirms their involvement in the antibody-chemokine interaction. In addition to mutations that decreased or disrupted binding, one antibody mutation resulted in a 70-fold increase in affinity for human MCP-2. A key residue missing in human MCP-3, a chemokine not recognized by the antibody, was identified and engineering the preferred residue into the chemokine conferred binding to the antibody.  相似文献   

14.
Three mutant crystals of neo-trichosanthin (n-TCS), R163K, R163Hand R163Q, were obtained by the hanging drop vapor diffusionmethod. Structure determination indicated that there are nosignificant differences between the mutants and n-TCS exceptin the active pocket. All of them were also soaked in sodiumcitrate buffer (pH 4.5) containing 20% KCl and 10 mg/ml AMP.Structure determination suggests that in the active pocket ofthe crystals of R163K and R163H, parallel to the aromatic ringof Tyr70, each mutant possesses an adenine. The relationshipbetween structure and function is discussed. Biochemical analysisreveals that the mutants R163K and R163H have N-glycosidaseactivity, while R163Q does not. This suggests that R163 is acrucial residue for the enzyme activity of n-TCS, and its roleis providing proton.  相似文献   

15.
A methodology is proposed to solve a difficult modeling problemrelated to the recently sequenced P39 protein. This sequenceshares no similarity with any known 3D structure, but a foldis proposed by several threading tools. The difficulty in aligningthe target sequence on one of the proposed template structuresis overcome by combining the results of several available predictionmethods and by refining a rational consensus between them. Insilico validation of the obtained model and a preliminary cross-checkwith experimental features allow us to state that this borderlineprediction is at least reasonable. This model raises relevanthypotheses on the main structural features of the protein andallows the design of site-directed mutations. Knowing the geneticcontext of the P39 reading frame, we are now able to suggesta function for the P39 protein: it would act as a periplasmicsubstrate-binding protein.  相似文献   

16.
The tetrapeptide Phe-Asn-Pro-Arg is a structurally optimized sequence for binding to the active site of thrombin. By conjugating this tetrapeptide or some variants to a C-terminal fragment of hirudin, we were able to generate a series of new bivalent inhibitors of thrombin containing only genetically encodable natural amino acids. We found that synergistic binding to both the active site and an exosite of thrombin can be enhanced through substitutions of amino acid residues at the P3 and P3' sites of the active-site directed sequence, Phe(P4)-Xaa(P3)-Pro(P2)-Arg(P1)-Pro(P1')-Gln(P2')-Yaa(P3'). Complementary to rational design, a phage library was constructed to explore further the residue requirements at the P4, P3 and P3' sites for bivalent and optimized two-site binding. Very significantly, panning of the phage library has led to thrombin-inhibitory peptides possessing strong anti-clotting activities in the low nanomolar range and yet interfering only partially the catalytic active site of thrombin. Modes of action of the newly discovered bivalent inhibitors are rationalized in light of the allosteric properties of thrombin, especially the interplay between the proteolytic action and regulatory binding occurring at thrombin surfaces remote from the catalytic active site.  相似文献   

17.
We have engineered human epidermal growth factor (EGF) by directed evolution through yeast surface display for significantly enhanced affinity for the EGF receptor (EGFR). Statistical analysis of improved EGF mutants isolated from randomly mutated yeast-displayed libraries indicates that mutations are biased towards substitutions at positions exhibiting significant phylogenetic variation. In particular, mutations in high-affinity EGF mutants are statistically biased towards residues found in orthologous EGF species. This same trend was also observed with other proteins engineered through directed evolution in our laboratory (EGFR, interleukin-2) and in a meta-analysis of reported results for engineered subtilisin. By contrast, reported loss-of-function mutations in EGF were biased towards highly conserved positions. Based on these findings, orthologous mutations were introduced into a yeast-displayed EGF library by a process we term shotgun ortholog scanning mutagenesis (SOSM). EGF mutants with a high frequency of the introduced ortholog mutations were isolated through screening the library for enhanced binding affinity to soluble EGFR ectodomain. These mutants possess a 30-fold increase in binding affinity over wild-type EGF to EGFR-transfected fibroblasts and are among the highest affinity EGF proteins to be engineered to date. Collectively, our findings highlight a general approach for harnessing information present in phylogenetic variability to create useful genetic diversity for directed evolution. Our SOSM method exploits the benefits of library diversity obtained through complementary methods of error-prone PCR and DNA shuffling, while circumventing the need for acquisition of multiple genes for family or synthetic shuffling.  相似文献   

18.
Binding free energy calculations for P450cam-substrate complexes   总被引:2,自引:0,他引:2  
A recently proposed semi-empirical method for calculating bindingfree energies was used to examine the binding of a variety ofsubstrates to cytochrome P450cam. For a set of 11 differentpotential substrates of cytochrome P450cam, both the absoluteand relative binding free energies were generally well reproduced.The mean error in the calculated absolute binding free energyfor all 11 compounds is 0.55 kcal/mol. Forty-eight out of 55calculated relative binding free energies have the correct signand the mean unsigned error between calculated and experimentalrelative binding free energies is 0.77 kcal/mol. For one substrate,thiocamphor, the effect of substrate orientation on the calculatedbinding free energy was examined. The ability of this methodto predict the effect of active site mutations was also examinedin two cases.  相似文献   

19.
Three distinct double-site and two single-site ricin B chain(RTB) mutants were expressed in Spodoptera frugiperda insectcells and purified from infected cell supernatants. The yieldsof recombinant proteins were 0.01–0.2 mg/1. The purityafter monoclonal antibody affinity chromatography was 1–20%.The mutant proteins were soluble, immuno-reactive with monoclonalantibodies and polyclonal antibodies to RTB and demonstratedmolecular weights of 32 kDa, similar to plant RTB. All threedouble-site and both single-site mutants bound asialofetuinand mammalian cell surfaces based on an asialofetuin ELISA andcell binding immunofluorescence assay. While one double-sitemutant, W37S/Y248S, had a 1 log drop in sugar binding, the othertwo double-site mutants W37S/Y248H and D22E/D234E had 2 logreductions in sugar binding. Each mutant reassociated efficiently(25–75%) with plant ricin A chain (RTA) to form cytotoxicheterodimers. The concentration of protein required to reduceprotein synthesis 50% (ID50) was 1 log higher than plant ricinfor W37S/Y248S-RTA and the single-site mutant heterodimers,Q35N-RTA and D22E-RTA and 2 logs higher than plant ricin forthe other two double-site mutant heterodimers. The results suggestamino acid residues in both the 1 and 2 subdomains of RTB participatein sugar binding. However, other subdomains must contributeto the avidity of ricin for cell surface oligosaccharides.  相似文献   

20.
Using genetically engineered mutants of the neutral pro-teasefrom Bacillus stearothermophilus (BsteNP), it had been shownthat the surface-exposed structural motif constituted by Phe63embedded in a four amino acid hydrophobic pocket is criticalfor the thermal stability of the thermophilic neutral proteasesfrom Bacilli. To measure the stabilizing contribution of eachhydrophobic interaction taking place between Phe63 and the hydrophobicpocket, we grafted this structural motif in the neutral proteasefrom the mesophile Bacillus subtilis (BsubNP). This was accomplishedby first creating the Thr63Phe mutant of BsubNP and then generatinga series of mutants in which the four amino acids which in thermolysinsurround Phe63 and form the hydrophobic pocket were added oneafter the other. By analysing the thermal stability of eachmutant it was found that the 2°C destabilizing effect ofthe Thr63Phe substitution was completely suppressed by the additionof the four amino acid hydrophobic pocket, each replacementproviding a stabilizing contribution of approxi mately 0.8–1°C.These results are discussed in the light of the peculiar mechanismof thermal inactivation of proteolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号