首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the increasing deployment of hydrogen fuel cell forklifts, it is essential to understand the risks of incidents involving these systems. A quantitative risk assessment (QRA) study was conducted to determine the potential hydrogen release scenarios, probabilities, and consequences in fuel cell forklift operations. QRA modeling tools, such as fault tree analysis (FTA) and event sequence diagrams (ESD), were used together with hydrogen systems data. This work provides insights into the fatality risk from a hydrogen fuel cell forklift and the reliability of its design and components. The analysis shows that the expected fatal accident rate of a hydrogen forklift is considerably higher than current fatal injury rates observed by the Bureau of Labor Statistics for industrial truck operators and material handling occupations. Nevertheless, the average individual risk posed to forklift drivers was found to be likely tolerable based on current risks accepted by industrial truck operators. Jet fires are found to dominate the system's risk, however, the risk of explosions is also considerable. An importance measures analysis shows that these risks could be mitigated by improving the design and reliability of pressure relief devices, as well as other components prone to leak such as filters and check valves. We also identify sources of uncertainty and conservatisms in the QRA process that can guide future research in hydrogen systems. These results provide powerful insight into improvements in the design of fuel cell forklifts to reduce risk and enable the safe deployment of this key technology for a decarbonized future.  相似文献   

2.
The International Centre for Hydrogen Energy Technologies (ICHET) has been implementing measures to demonstrate potential benefits of “hydrogen and fuel cell systems” in developing countries. ICHET is a United Nations Industrial Development Organization (UNIDO) project funded by the Turkish Ministry of Energy and Natural Resources. To achieve its mission, ICHET implements pilot demonstration projects, provides applied research and development funding, and organizes workshops, education and training activities. Long term objective of the centre are to show implementation of hydrogen energy technologies with renewable energy systems and encourage local industries to manufacture similar systems for commercial applications. Support has been provided to select industrial partners in Turkey for developing prototypes including a fuel cell forklift, a fuel cell boat, a fuel cell passenger cart, renewable energy systems integrated mobile house, fuel cell based Uninterrupted Power Supply (UPS) installations. As more and more systems are demonstrated, public awareness of applications of hydrogen and fuel cell technologies will increase. ICHET has polymer electrolyte membrane (PEM) fuel cell testing capabilities together with analytical equipment to conduct fuel cell, hydrogen production and storage research. These facilities are being used for educational purposes with hundreds of engineers trained to date.  相似文献   

3.
Hydrogen fuels are being deployed around the world as an alternative to traditional petrol and battery technologies. As with all fuels, regulations, codes and standards are a necessary component of the safe deployment of hydrogen technologies. There has been a focused effort in the international hydrogen community to develop codes and standards based on strong scientific principles to accommodate the relatively rapid deployment of hydrogen-energy systems. The need for science-based codes and standards has revealed the need to advance our scientific understanding of hydrogen in engineering environments. This brief review describes research and development activities with emphasis on scientific advances that have aided the advancement of hydrogen regulations, codes and standards for hydrogen technologies in four key areas: (1) the physics of high-pressure hydrogen releases (called hydrogen behavior); (2) quantitative risk assessment; (3) hydrogen compatibility of materials; and (4) hydrogen fuel quality.  相似文献   

4.
The development of hydrogen (H2) production systems and equipment utilizing hydrogen fuel is a key factor in the creation of a worldwide hydrogen energy network. The World Energy Network (WE-NET) project made significant progress in its development work in FY2002, especially in the critical area of hydrogen fueling stations. This report will examine some of the highlights of the FY2002 WE-NET project, and will also consider the impact of power density on fuel cell cost. Hydrogen production method also evaluated by scale merit (kW/m3).  相似文献   

5.
To place hydrogen energy usage into proper perspective, International Center for Hydrogen Energy Technologies (ICHET) has been implementing measures to demonstrate potential benefits of the “hydrogen and fuel cell systems” in developing countries. Demonstration of technologies is the most important aspect of ICHET vision for the formation of an industry in the developing world. ICHET has embarked on a series of educational and laboratory activities designed to increase the knowledge and awareness of students and advanced researchers concerning hydrogen energy technologies. The state of the art fuel cell laboratory is available for joint technology development and demonstration activities. Internship activities facilitate knowledge transfer, exchange of information at regional, national and international levels and involve academics, researchers, experts and service providers. Collaboration is a key part of the organizational strategy for joint projects, funding and trainings in the field of hydrogen and fuel cells.  相似文献   

6.
毛宗强 《中外能源》2010,15(7):29-34
2010年5月在德国埃森召开的"第18届世界氢能大会"上,来自美国、德国、日本、中国等国家的代表介绍了各自国家最新的氢能进展。中国科技部部长万钢出席大会并发言指出:中国要制订国家氢能规划,加大对氢能的投入,扩大氢能示范和应用,加强氢能的国际合作。美国能源部Nancy L Garland博士和Michacel Mills介绍了美国氢能的总体情况,指出:目前美国每年生产5000×104m3氢气,拥有氢气管道3000km以上,现有氢燃料电池轿车230多辆,氢燃料电池公共汽车130多辆,加氢站约200座。在燃料电池商业化方面,美国仍存在着技术上和经济性方面的障碍。在2007~2010财政年度,美国通过立法和各类货款、补贴,进一步加大了对氢能的扶持力度,美国能源部多次联合其他机构,召开氢能基础设施研讨会,就降低燃料电池成本、氢能政策、税收、碳税、氢能信息和教育、燃料电池革新方向,以及新的商业模式等进行讨论。目前,美国加州是美国最积极推进氢燃料电池技术与示范的州,该州预计于2016~2018年,其氢燃料电池轿车数量将达到54300辆,并计划进一步发展氢能高速公路。德国国家全资公司NOW公司总经理波霍夫博士等人介绍了德国的氢能进展。主要内容包括:德国准备到2015年,共建造1000座加氢站,将为10×104辆氢燃料电池车提供氢气;德国在氢气来源方面,2020年以前主要来源于副产氢气和天然气制氢,2030年以后主要依靠煤制氢(集合CO2捕集)、风能制氢、生物质能制氢等。日本为了尽快研发、推广燃料电池车,采取了全额投入经费的办法,委托日本产业省(METI)的全资公司VEDO公司负责管理"日本氢能和燃料电池示范项目(JHFC)",该项目的目标之一,就是到2025年,在全日本建立1000座加氢站。  相似文献   

7.
The paper provides brief introduction to the National South African Program, branded HySA (Hydrogen South Africa) as well as discusses potential business cases for deployment of hydrogen and fuel cell technology in South Africa. This paper also describes some key activities in the area of hydrogen production and storage within HySA Infrastructure Center of Competence in South Africa. The content of this paper is based on the presentation given during the recent WHEC 2016 Congress in Zaragoza, Spain. More specifically, the discussion of activities at HySA Infrastructure Center of Competence in the paper includes hydrogen production and storage.  相似文献   

8.
Hydrogen energy is increasingly incorporated into long-distance transportation systems. Whether the coupled hydrogen-based transportation system can achieve a sustainable business operation mode requires quantification of environmental and economic performance by a comprehensive cost-benefit analysis. This study proposes a cost-based life cycle assessment method to evaluate the environmental and economic benefits of hydrogen-based long-distance transportation systems. The innovative cost assessment method introduces internal and external economic costs to conduct a multi-scenario assessment. According to the key factors of mileage, government subsidies and hydrogen fuel prices, this research identifies the key cost component of the hydrogen-based transportation system in China by using a multilevel comparison with cell-driven and oil-fueled vehicles. The results show that hydrogen fuel cell electric vehicles are competitive in terms of both fuel costs and environmental costs. As hydrogen costs are expected to be gradually reduced by 43% in the future, hydrogen logistics vehicles and heavy trucks are expected to have better life-cycle economics than other energy vehicles by approximately 2030. Hydrogen buses will outperform other vehicles by approximately 2033, while hydrogen passenger cars will have a reduced life-cycle cost per kilometre within 0.1 CHY/km compared to other vehicles by approximately 2035. Ultimately, fuel consumption, average annual mileage, and hydrogen fuel cell electric vehicle policy are three factors that have greater impacts. Policy implications are put forward to implement optimal investment plan for hydrogen transportation systems.  相似文献   

9.
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY), is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells, together with the systems for their refuelling at industrial customers facilities. For these applications, high specific weight of the metallic hydrides has an added value, as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level, simplification of the design and reducing the system cost, together with improvement of the efficiency of system “MH store-FC”, is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway, Germany, Croatia), and two partner countries (South Africa and Indonesia).The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression, (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced, (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).  相似文献   

10.
The increased reliance on natural gas for heating worldwide makes the search for carbon-free alternatives imperative, especially if international decarbonisation targets are to be met. Hydrogen does not release carbon dioxide (CO2) at the point of use which makes it an appealing candidate to decarbonise domestic heating. Hydrogen can be produced from either 1) the electrolysis of water with no associated carbon emissions, or 2) from methane reformation (using steam) which produces CO2, but which is easily captured and storable during production. Hydrogen could be transported to the end-user via gas distribution networks similar to, and adapted from, those in use today. This would reduce both installation costs and end-user disruption. However, before hydrogen can provide domestic heat, it is necessary to assess the ‘risk’ associated with its distribution in direct comparison to natural gas. Here we develop a comprehensive and multi-faceted quantitative risk assessment tool to assess the difference in ‘risk’ between current natural gas distribution networks, and the potential conversion to a hydrogen based system. The approach uses novel experimental and modelling work, scientific literature, and findings from historic large scale testing programmes. As a case study, the risk assessment tool is applied to the newly proposed H100 demonstration (100% hydrogen network) project. The assessment includes the comparative risk of gas releases both upstream and downstream of the domestic gas meter. This research finds that the risk associated with the proposed H100 network (based on its current design) is lower than that of the existing natural gas network by a factor 0.88.  相似文献   

11.
Solar hydrogen production and its development in China   总被引:2,自引:1,他引:1  
Because of the needs of sustainable development of the mankind society and natural environment building a renewable energy system is one of the most critical issues that today's society must address. In the new energy system there is a requirement for a renewable fuel to replace current energy carrier. Hydrogen is an ideal secondary energy. Using solar energy to produce hydrogen in large scale can solve the problems of sustainability, environmental emissions, and energy security and become the focus of the international society in the area of energy science and technology. It has also been set as an important research direction by many international hydrogen programs. The Ministry of Science and Technology of China supported and launched a project of National Basic Research Program of China (973 Program) – the Basic Research of Mass Hydrogen Production using Solar Energy in 2003 for R&D in the areas of solar hydrogen production. The current status of solar hydrogen production research is reviewed and some significant results achieved in the project are reported in this paper. The trends of development and the future research directions in the field of solar hydrogen production in China are also briefly discussed.  相似文献   

12.
The U.S. Department of Energy's Fuel Cell Technologies Program addresses key technical challenges and institutional barriers facing the development and deployment of hydrogen and fuel cell technologies with the goal of decreasing dependence on oil, reducing carbon emissions and enabling reliable power generation. The Safety, Codes & Standards program area seeks to develop and implement the practices and procedures that will ensure safety in the operation, handling and use of hydrogen and hydrogen systems for all projects and utilize these practices and lessons learned to promote the safe use of hydrogen. Enabling the development of codes and standards for the safe use of hydrogen in energy applications and facilitating the development and harmonization of international codes and standards are integral to this work.  相似文献   

13.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

14.
Consumption of fossil fuels, which makes an immense contribution to greenhouse gas emissions, must be reduced. Hydrogen emerges as a unique solution to serve as fuel, energy carrier and feedstock because it is a clean, abundant, environmentally friendly and energy intensive gas. This study aims to investigate the development of a potential hydrogen hub located in Oshawa, Canada, which is aimed to provide a hydrogen infrastructure for future hydrogen economy. Numerous life cycle assessment and cost assessment studies are conducted to investigate what benefits such a hydrogen will bring to the city. The results show that fuel cell electric buses emit 89% fewer pollutants. Also, 60% of overall CO2 reduction is possible with a gradual transition to fuel cell technology within 20 years. However, in order for hydrogen infrastructure and costs to compete with fossil fuels, high-scale projects need to be developed with governmental incentives.  相似文献   

15.
In the future, hydrogen-based stationary and portable fuel cell systems can help supply some or all of the power demanded with additional advantages of higher reliability, lower emissions, independence from the general grid, and cogeneration capability. In order to understand how to prepare the future for this technology, this paper describes a thorough investigation of past alternative stationary and portable power projects in order for an assessment of the opportunities for stationary and portable fuel cell markets, as well as interactions with transportation hydrogen systems. The lessons learned from the programs are used to establish best practices and recommendations for a hydrogen strategy that addresses opportunities for hydrogen in power generation systems, as well as to make recommendations for market transformation within the hydrogen fuel cell industry.  相似文献   

16.
Because of the needs of sustainable development of the mankind society and natural environment building a renewable energy system is one of the most critical issues that today's society must address. In the new energy system there is a requirement for a renewable fuel to replace current energy carrier. Hydrogen is an ideal secondary energy. Using solar energy to produce hydrogen in large scale can solve the problems of sustainability, environmental emissions, and energy security and become the focus of the international society in the area of energy science and technology. It has also been set as an important research direction by many international hydrogen programs. The Ministry of Science and Technology of China supported and launched a project of National Basic Research Program of China (973 Program) – the Basic Research of Mass Hydrogen Production using Solar Energy in 2003 for R&D in the areas of solar hydrogen production. The current status of solar hydrogen production research is reviewed and some significant results achieved in the project are reported in this paper. The trends of development and the future research directions in the field of solar hydrogen production in China are also briefly discussed.  相似文献   

17.
Among all introduced green alternatives, hydrogen, due to its abundance and diverse production sources is becoming an increasingly viable clean and green option for transportation and energy storage. Governments are considerably funding relevant researches and the public is beginning to talk about hydrogen as a possible future fuel. Hydrogen production, storage, delivery, and utilization are the key parts of the Hydrogen Economy (HE). In this paper, hydrogen storage and delivery options are discussed thoroughly. Then, since safety and reliability of hydrogen infrastructure is a necessary enabling condition for public acceptance of these technologies and any major accident involving hydrogen can be difficult to neutralize, we review the main existing safety and reliability challenges in hydrogen systems. The current state of the art in safety and reliability analysis for hydrogen storage and delivery technologies is discussed, and recommendations are mentioned to help providing a foundation for future risk and reliability analysis to support safe, reliable operation.  相似文献   

18.
Hydrogen is recognized as a key source of the sustainable energy solutions. The transportation sector is known as one of the largest fuel consumers of the global energy market. Hydrogen can become a promising fuel for sustainable transportation by providing clean, reliable, safe, convenient, customer friendly, and affordable energy. In this study, the possibility of hydrogen as the major fuel for transportation systems is investigated comprehensively based on the recent data published in the literature. Due to its several characteristic advantages, such as energy density, abundance, ease of transportation, a wide variety of production methods from clean and renewable fuels with zero or minimal emissions; hydrogen appears to be a great chemical fuel which can potentially replace fossil fuel use in internal combustion engines. In order to take advantage of hydrogen as an internal combustion engine fuel, existing engines should be redesigned to avoid abnormal combustion. Hydrogen use in internal combustion engines could enhance system efficiencies, offer higher power outputs per vehicle, and emit lower amounts of greenhouse gases. Even though hydrogen-powered fuel cells have lower emissions than internal combustion engines, they require additional space and weight and they are generally more expensive. Therefore, the scope of this study is hydrogen-fueled internal combustion engines. It is also highlighted that in order to become a truly sustainable and clean fuel, hydrogen should be produced from renewable energy and material resources with zero or minimal emissions at high efficiencies. In addition, in this study, conventional, hybrid, electric, biofuel, fuel cell, and hydrogen fueled ICE vehicles are comparatively assessed based on their CO2 and SO2 emissions, social cost of carbon, energy and exergy efficiencies, fuel consumption, fuel price, and driving range. The results show that when all of these criteria are taken into account, fuel cell vehicles have the highest average performance ranking (4.97/10), followed by hydrogen fueled ICEs (4.81/10) and biofuel vehicles (4.71/10). On the other hand, conventional vehicles have the lowest average performance ranking (1.21/10), followed by electric vehicles (4.24/10) and hybrid vehicles (4.53/10).  相似文献   

19.
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument, the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles.The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas”, “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified, to build up three large internal research projects “InsHyde”, “HyTunnel”, and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations, codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations.The integration process was supported by common activities like a series of workshops and benchmarks related to experimental and numerical work. The networks research tools were categorised and published in online catalogues. Important integration success was provided by commonly setting up the International Conference on Hydrogen Safety, the first academic education related to hydrogen safety and the Hydrogen Safety Handbook. Finally, the network founded the International Association for Hydrogen Safety, which opens the future networking to all interested parties on an international level.  相似文献   

20.
Hydrogen energy storage systems are expected to play a key role in supporting the net zero energy transition. Although the storage and utilization of hydrogen poses critical risks, current hydrogen energy storage system designs are primarily driven by cost considerations to achieve economic benefits without safety considerations. This paper aims to study the safety of hydrogen storage systems by conducting a quantitative risk assessment to investigate the effect of hydrogen storage systems design parameters such as storage size, mass flow rate, storage pressure and storage temperature. To this end, the quantitative risk assessment procedure, which includes data collection and hazard identification, frequency analysis, consequence analysis and risk analysis, was carried out for the hydrogen storage system presented in a previous study [1]. In the consequence analysis, the Millers model and TNO multi-energy were used to model the jet fire and explosion hazards, respectively. The results show that the storage capacity and pressure have the greatest influence on the hydrogen storage system risk assessment. More significantly, the design parameters may affect the acceptance criteria based on the gaseous hydrogen standard. In certain cases of large storage volume or high storage pressure, risk mitigation measures must be implemented since the risk of the hydrogen storage system is unacceptable in accordance with ISO 19880-1. The study highlights the significance of risk analysis conduction and the importance of considering costs associated with risk mitigation in the design of hydrogen storage system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号