首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

2.
In this study, hybrid fuels consisting of rapeseed oil/diesel blend, 1% aqueous ethanol and a surfactant (oleic acid/1-butanol mixture) were prepared and tested as a fuel in a direct injection (DI) diesel engine. The main fuel properties such as the density, viscosity and lower heating value (LHV) of these fuels were measured, and the engine performance, combustion and exhaust emissions were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the hybrid fuels were decreased and close to that of diesel fuel with the increase of ethanol volume fraction up to 30%. The start of combustion was later than that of diesel fuel and the peak cylinder pressure, peak pressure rise rate and peak heat release rate were higher than those of diesel fuel. The brake specific fuel consumption (BSFC) of hybrid fuels was increased with the volume fraction of ethanol and higher than that of diesel. The brake specific energy consumption (BSEC) was almost identical for all test fuels. The smoke emissions were lower than those for diesel fuel at high engine loads, the NOx emissions were almost similar to those of diesel fuel, but CO and HC emissions were higher, especially at low engine loads.  相似文献   

3.
Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production and is used on most modern high-speed direct injection (HSDI) diesel engines. However EGR has different effects on combustion and emissions production that are difficult to distinguish (increase of intake temperature, delay of rate of heat release (ROHR), decrease of peak heat release, decrease in O2 concentration (and thus of global air/fuel ratio (AFR)) and flame temperature, increase of lift-off length, etc.), and thus the influence of EGR on NOx and particulate matter (PM) emissions is not perfectly understood, especially under high EGR rates. An experimental study has been conducted on a 2.0 l HSDI automotive diesel engine under low-load and part load conditions in order to distinguish and quantify some effects of EGR on combustion and NOx/PM emissions. The increase of inlet temperature with EGR has contrary effects on combustion and emissions, thus sometimes giving opposite tendencies as traditionally observed, as, for example, the reduction of NOx emissions with increased inlet temperature. For a purely diffusion combustion the ROHR is unchanged when the AFR is maintained when changing in-cylinder ambient gas properties (temperature or EGR rate). At low-load conditions, use of high EGR rates at constant boost pressure is a way to drastically reduce NOx and PM emissions but with an increase of brake-specific fuel consumption (BSFC) and other emissions (CO and hydrocarbon), whereas EGR at constant AFR may drastically reduce NOx emissions without important penalty on BSFC and soot emissions but is limited by the turbocharging system.  相似文献   

4.
在柴油机上进行柴油、三种生物乳化柴油(E10、E15和E20)和生物柴油的推进特性试验,就其燃烧特性、动力性、经济性及常规排放特性进行对比。试验结果显示:高转速时,生物乳化柴油的缸内燃烧压力和放热率略低于柴油,缸内燃烧温度有所降低;动力性相比柴油略有下降,仅E10的燃油消耗率比柴油低,B100最高;烟度和NOx排放均有显著降低,且随水和丁醇掺混比例增加而降低; CO和HC排放与柴油基本无差别,整体增加不多。表明:生物乳化柴油作为替代燃料能保证柴油机运行的稳定性,可同时降低柴油机的烟度和NOx排放,具有良好的环境效益和经济效益。  相似文献   

5.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

6.
This study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1–32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations.  相似文献   

7.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO x and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO x emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions. __________ Translated from Chinese Internal Combustion Engine Engineering, 2007, 28(2): 19–23 [译自: 内燃机工程]  相似文献   

8.
Emulsions of diesel and water are often promoted as being able to overcome the difficulty of simultaneously reducing emissions of both oxidises of nitrogen (NOx) and particulate matter from diesel engines. In this paper we present measurements of the performance and NOx and hydrocarbon emissions of a diesel engine operating on a typical diesel oil emulsion and examine through the use of heat release analysis differences found during its combustion relative to standard diesel in the same engine. While producing similar or greater thermal efficiency and improved NOx and hydrocarbon emission outcomes, use of the emulsion also results in an increase in brake specific fuel consumption. Use of the emulsion is also shown to result in a retarded fuel injection, but smaller ignition delay for the same engine timing. As a result of these changes, cylinder pressures and temperatures are lower.  相似文献   

9.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

10.
The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration.The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions.  相似文献   

11.
Influence of biodiesel on engine combustion and emission characteristics   总被引:1,自引:0,他引:1  
This paper discusses the influence of biodiesel on the engine combustion characteristics. The considered fuel is neat biodiesel from rapeseed oil. The considered engine is a bus diesel engine with injection M system. The engine characteristics are obtained by experiments and numerical simulation. The results obtained with biodiesel are compared to those obtained with mineral diesel under various operating regimes. In this way, the influences of biodiesel usage on the injection pressure, injection timing, ignition delay, in-cylinder gas pressure and temperature, heat release rate, exhaust gas temperatures, harmful emissions, specific fuel consumption, and on engine power are analyzed. Furthermore, the relationships among fuel properties, injection and combustion characteristics, harmful emissions, and other engine performance are determined. Special attention is given to possible explanations of higher NOx emission in spite of lower in-cylinder gas temperature.  相似文献   

12.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Higher NOx is one of the major problems to be overcomed in a low heat rejection (LHR) diesel engine as insulation leads to an increase in combustion temperature about 200–250 °C compared to an identical standard (STD) diesel engine. High combustion temperatures alter optimum injection timing of a LHR engine. With the proper adjustment of the injection timing, it is possible to partially offset the adverse effect of insulation on heat release rate and hence to obtain improved performance and lower NOx. However, the injection timing and brake specific fuel consumption (BSFC) trade-off must be considered together in performance and NOx emission point of view. In this study, optimum injection timing was found with 4 crank angle (34° CA) retarded before top dead centre (BTDC) in LHR diesel engine in comparison to that of STD diesel engine (38° CA BTDC). When the LHR engine was operated with the injection timing of the 38 crank angle, which is the optimum value of the STD engine, it was shown that NOx emission increased about 15%. However, when the injection timing was retarded to 34° CA in the LHR case, it was observed a decrease on the NOx emissions with about 40% and the brake specific fuel consumption (BSFC) with about 6% compared to that of the STD case. Thus, by retarding the injection timing, an additional 1.5% saving in fuel consumption was obtained.  相似文献   

14.
The effects of different ethanol–diesel blended fuels on the performance and emissions of diesel engines have been evaluated experimentally and compared in this paper. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI) diesel engine using 0% (neat diesel fuel), 5% (E5–D), 10% (E10–D), 15% (E15–D), and 20% (E20–D) ethanol–diesel blended fuels. With the same rated power for different blended fuels and pure diesel fuel, the engine performance parameters (including power, torque, fuel consumption, and exhaust temperature) and exhaust emissions [Bosch smoke number, CO, NOx, total hydrocarbon (THC)] were measured. The results indicate that: the brake specific fuel consumption and brake thermal efficiency increased with an increase of ethanol contents in the blended fuel at overall operating conditions; smoke emissions decreased with ethanol–diesel blended fuel, especially with E10–D and E15–D. CO and NOx emissions reduced for ethanol–diesel blends, but THC increased significantly when compared to neat diesel fuel.  相似文献   

15.
The objective of this paper was to study the effects of the injection pressure and injection timing on the combustion and emission characteristics in a single-cylinder common-rail direct injection (CRDI) diesel engine fueled with waste cooking oil (WCO) biodiesel and commercial diesel fuel. The fuel property including fatty acid composition for the biodiesel were measured and compared with those of the conventional diesel fuel. The engine tests were conducted at two injection pressures (80 and 160 MPa) and different injection timings from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) under two different engine loads. The results showed that the indicated specific fuel consumption (ISFC) with respect to the injection timings of the biodiesel was higher than that of the diesel fuel under all experimental conditions. The peak cylinder pressure and the peak heat release rate of the biodiesel were slightly lower, while the ignition delay was slightly longer under all operating conditions. In terms of emissions, the biodiesel had benefits in reduction of smoke, carbon monoxide (CO), hydrocarbon (HC) emissions especially with high fuel injection pressure. The nitrogen oxide (NOx) emissions of the biodiesel were relatively higher than those of the diesel under all experimental conditions.  相似文献   

16.
《Biomass & bioenergy》2001,20(1):63-69
The objective of the present study is to reveal the effects of pure coconut oil and coconut oil–diesel fuel blends on the performance and emissions of a direct injection diesel engine. Operation of the test engine with pure coconut oil and coconut oil–diesel fuel blends for a wide range of engine load conditions was shown to be successful even without engine modifications. It was also shown that increasing the amount of coconut oil in the coconut oil–diesel fuel blend resulted in lower smoke and NOx emissions. However, this resulted in an increase in the BSFC. This was attributed to the lower heating value of neat coconut oil fuel compared to diesel fuel.  相似文献   

17.
In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NOx-soot trade-off characteristics were changed and improvements were found simultaneously. NOx and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.  相似文献   

18.
2-methoxyethyl acetate (MEA) can be used to decrease exhaust smoke as a new oxygenated additive of diesel. Several fuel blends which containing 10%, 15% and 20% MEA were prepared. The effects of MEA on engine’s power, fuel economy, emissions and combustion characteristics were studied on a single cylinder DI diesel engine. Under the same speed and load conditions, the maximum cylinder pressure decreases when fueled with the blends, while the ignition delays and the combustion duration becomes shorter. The engine emissions of smoke, HC and CO are reduced when MEA is added in diesel. However, MEA has a little effect on NOx emissions. When fueled with MEA15, the coefficient of light absorption of smoke opacimeter decreases about 50% with expense of 5% power, and the engine’s thermal efficiency increases about 2%.  相似文献   

19.
In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The important properties of biodiesel were compared with those of diesel. Diesel and biodiesel were used as fuels in the compression ignition engine, and its performance, emissions and combustion characteristics of the engine were analyzed. The results showed that biodiesel exhibited the similar combustion stages to that of diesel, however, biodiesel showed an earlier start of combustion. At lower engine loads, the peak cylinder pressure, the peak rate of pressure rise and the peak of heat release rate during premixed combustion phase were higher for biodiesel than for diesel. At higher engine loads, the peak cylinder pressure of biodiesel was almost similar to that of diesel, but the peak rate of pressure rise and the peak of heat release rate were lower for biodiesel. The power output of biodiesel was almost identical with that of diesel. The brake specific fuel consumption was higher for biodiesel due to its lower heating value. Biodiesel provided significant reduction in CO, HC, NOx and smoke under speed characteristic at full engine load. Based on this study, biodiesel can be used as a substitute for diesel in diesel engine.  相似文献   

20.
Experiments were conducted to investigate the combustion and emission characteristics of a diesel engine with addition of hydrogen or methane for dual-fuel operation, and mixtures of hydrogen–methane for tri-fuel operation. The in-cylinder pressure and heat release rate change slightly at low to medium loads but increase dramatically at high load owing to the high combustion temperature and high quantity of pilot diesel fuel which contribute to better combustion of the gaseous fuels. The performance of the engine with tri-fuel operation at 30% load improves with the increase of hydrogen fraction in methane and is always higher than that with dual-fuel operations. Compared with ULSD–CH4 operation, hydrogen addition in methane contributes to a reduction of CO/CO2/HC emissions without penalty on NOx emission. Dual-fuel and tri-fuel operations suppress particle emission to the similar extent. All the gaseous fuels reduce the geometry mean diameter and total number concentration of diesel particulate. Tri-fuel operation with 30% hydrogen addition in methane is observed to be the best fuel in reducing particulate and NOx emissions at 70 and 90% loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号