首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《Energy Policy》2005,33(7):885-896
In this paper MARKAL-MACRO, an integrated energy-environment-economy model, is used to generate China’s reference scenario for future energy development and carbon emission through the year 2050. The results show that with great efforts on structure adjustment, energy efficiency improvement and energy substitution, China’s primary energy consumption is expected to be 4818 Mtce and carbon emission 2394 MtC by 2050 with annual decrease rate of 3% for the carbon intensity per GDP during the period 2000–2050. On the basis of this reference scenario, China’s marginal abatement cost curves of carbon for the year 2010, 2020 and 2030 are derived from the model, and the impacts of carbon emission abatement on GDP are also simulated. The results are compared with those from other sources. The research shows that the marginal abatement costs vary from 12US$/tC to 216US$/tC and the rates of GDP losses relative to reference range from 0.1% to 2.54% for the reduction rates between 5% and 45%. Both the marginal abatement costs and the rates of GDP losses further enlarge on condition that the maximum capacity of nuclear power is constrained to 240 GW or 160 GW by 2050. The paper concludes that China's costs of carbon abatement is rather high in case of carbon emissions are further cut beyond the reference scenario, and China's carbon abatement room is limited due to her coal-dominant energy resource characteristic. As economic development still remains the priority and per capita income as well as per capita carbon emission are far below the world average, it will be more realistic for China to make continuous contributions to combating global climate change by implementing sustainable development strategy domestically and playing an active role in the international carbon mitigation cooperation mechanisms rather than accepting a carbon emission ceiling.  相似文献   

2.
This paper describes a hybrid modelling approach to assess the future development of China's energy system, for both a “hypothetical counterfactual baseline” (HCB) scenario and low carbon (“abatement”) scenarios. The approach combines a technology-rich integrated assessment model (MESSAGE) of China's energy system with a set of sector-specific, bottom-up, energy demand models for the transport, buildings and industrial sectors developed by the Grantham Institute for Climate Change at Imperial College London. By exploring technology-specific solutions in all major sectors of the Chinese economy, we find that a combination of measures, underpinned by low-carbon power options based on a mix of renewables, nuclear and carbon capture and storage, would fundamentally transform the Chinese energy system, when combined with increasing electrification of demand-side sectors. Energy efficiency options in these demand sectors are also important.  相似文献   

3.
Shobhakar Dhakal   《Energy Policy》2009,37(11):4208-4219
Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. Thus, a better understanding of urban energy uses is necessary for Chinese decision-makers at various levels to address energy security, climate change mitigation, and local pollution abatement. Therefore, this paper addresses three key questions: What is the urban contribution to China's energy usage and CO2 emissions? What is the contribution of large cities, and what alternate energy–economy pathways are they following? How have energy uses and CO2 emissions transformed in the last two decades in key Chinese cities? This three-tier analysis illustrates the changes in urban energy uses and CO2 emissions in China. The results show that the urban contributions make up 84% of China's commercial energy usage. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China's energy uses and CO2 emissions. In four provincial cities, the per capita energy usage and CO2 emissions have increased several-fold. Rapid progress was made in reducing the carbon intensity of economic activities in cities throughout the 1990s, but alarmingly, such progress has either slowed down or been reversed in the last few years. These results have important policy implications.  相似文献   

4.
Evaluating carbon dioxide emissions in international trade of China   总被引:3,自引:0,他引:3  
China is the world's largest emitter of carbon dioxide (CO2). As exports account for about one-third of China's GDP, the CO2 emissions are related to not only China's own consumption but also external demand. Using the input–output analysis (IOA), we analyze the embodied CO2 emissions of China's import and export. Our results show that about 3357 million tons CO2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO2 abatement.  相似文献   

5.
Abatement cost is the main concern for climate change mitigation and the key factor for mitigation cost is technological change. This study established an integrated economic, energy, environmental, dynamic, computable general equilibrium (CGE) model representing endogenous technological change for China's climate change policy analysis. This study analyzed and compared the economic impact of different approaches to mitigation commitments as well as the potential role of technological change in the formulation of mitigation targets and commitments, taking into account China's climate policy-making needs based on the current international climate negotiation process. The results show that, absolute emission limits similar to the Kyoto Protocol will seriously impede the future economic development of China, while the impact of an 80% reduction in carbon intensity, forecast for 2050 based on the 2005 level, is relatively small. Technological change can promote economic growth, improve energy efficiency and reduce carbon intensity per unit of output through the substitution of production factors. Consequently it can reduce marginal abatement cost and related GDP loss by mitigation. At the same time it can increase mitigation potentials and extend the emission reduction amount, showing that consideration of the impact of technological change when deciding the emission reduction targets is necessary.  相似文献   

6.
Carbon dioxide (CO2) reduction, which is the central issue in addressing global warming, depends on the extent that clean energy can substitute for CO2 emitting coal and non-energy factors can substitute for energy factor. The purposes of this paper are to empirically investigate inter-factor/inter-fuel substitution in China and to evaluate the determinants of China's energy-related carbon intensity as well as mitigation effects of carbon tax. Considering China's rapid increase in energy consumption and the slow adjustment in substitution, the two-stage estimation method and the dynamic error correction mechanism are employed in this study. The empirical results suggest substitutability among different types of energy sources as well as substitutability among energy, labor, and capital. The magnitude of cross-price elasticities indicates that the substitutions are inelastic, which limits the scope of the Chinese government to implement substitution strategy aiming at energy conservation and environmental management. China's carbon intensity declined during 1985–2012, most of which can be attributed to labor substitution and energy price increase. However, carbon-intensive technology being embodied in China's capital investment (energy consuming equipment) has contributed to the increase in carbon intensity. A carbon tax of RMB 50/tonne could reduce 332.9 million tonnes CO2 emissions on the basis of 2012. In addition, if ignoring the feedback between inter-factor/inter-fuel substitutions, CO2 mitigation potential would be underestimated.  相似文献   

7.
To fulfill its Copenhagen pledges to control carbon emissions and mitigate climate change, China plans to establish a nationwide emissions trading scheme (ETS) in 2016. This paper develops a multi-sector dynamic computable general equilibrium model with an ETS module to study the appropriate ETS policy design, including a carbon cap, permit allocation and supplementary policies (e.g., penalty policies and subsidy policies). The main results are as follows. (1) To achieve China's Copenhagen pledge, the equilibrium nationwide carbon price is observed to be between 36 and 40 RMB yuan per metric ton. (2) The ETS policy has a cost-effective mitigation effect by improving China's production and energy structures with relatively little economic harm. (3) Various ETS sub-policies should be carefully designed to balance economic growth and carbon mitigation. In particular, the carbon cap should be set according to China's Copenhagen pledge. A relatively large distribution ratio of free permits, the output-based grandfathering rule for free permits, a penalty price (on illegitimate emissions) slightly above the carbon price, and a sufficient subsidy (from ETS revenue) are strongly recommended in the early stages to avoid significant economic loss. These designs can be adjusted in later stages to enhance the mitigation effect.  相似文献   

8.
As the largest carbon emitter in the world, China is actively promoting carbon emission reduction and low-carbon sustainable development. To better formulate low-carbon transformation measures, we calculated and compared China's production-based carbon emissions (PD-CEs) and consumption-based carbon emissions (CD-CEs) from 2000 to 2014 based on the Multi-Regional Input–Output tables. We also performed a structural decomposition analysis (SDA) to investigate the factors contributing to changes in China's PD-CEs and CD-CEs. The study's findings are as follows: First, China's PD-CEs are continually larger than its CD-CEs, such that China is a net exporter of emissions. However, China's exported emissions and net exported emissions peaked at 2200 and 1786 Mt., respectively, as of 2007. In 2014, China's net exported emissions were 1371 Mt., down 23.25% compared with 2007. Second, China's PD-CEs mainly serve the domestic final demand, and China's CD-CEs are mainly emitted at home. Production and supply of electric power, steam and hot water is the biggest contributor to China's PD-CEs while Construction the largest contributor to China's CD-CEs. Third, the SDA results show that China's PD-CEs and CD-CEs mainly grew due to changes in China's final demand volume. The significant restraint to the growth of China's PD-CEs and CD-CEs is the effect of changes in the domestic emission intensity. Changes in China's ties with other economies have an important impact on China's carbon emissions. Developing economies are replacing developed economies as major destinations for China's emissions export. Fourth, the growth rate of China's PD-CEs and CD-CEs significantly slowed down and the factors contributing to the changes in China's PD-CEs and PD-CEs have changed after China's economy entered the new normal.  相似文献   

9.
In the international community, there are many appeals to ratcheting up the current nationally determined contributions (NDCs), in order to narrow the 2030 global emissions gap with the Paris goals. Near-term mitigation has a direct impact on the required efforts beyond 2030 to control warming within 2°C or 1.5°C successfully. In this study, implications of near-term mitigation on China's long-term energy transitions until 2100 for aligning with the Paris goals, are quantified using a refined Global Change Assessment Model (GCAM) with six mitigation scenarios. Results show that intensifying near-term mitigation will alleviate China's transitional challenges during 2030–2050 and long-term reliance on carbon dioxide removal technologies (CDR). Each five-year earlier peaking of CO2 allows almost a five-year later carbon neutrality of China's energy system. To align with 2°C (1.5°C), peaking in 2025 instead of 2030 reduces the requirement of CDR over the century by 17% (13%). Intensifying near-term mitigation also tends to have economic benefits to China's Paris-aligned energy transitions. Under 2°C (1.5°C), peaking in 2025 instead of 2030, with larger near-term mitigation costs by 1.3 (1.6) times, has the potential to reduce China's aggregate mitigation costs throughout the century by 4% (6%). Although in what way China's NDC is to be updated is determined by decision-makers, transitional and economic benefits suggest China to try its best to pursue more ambitious near-term mitigation in accordance with its latest national circumstances and development needs.  相似文献   

10.
Reasonable estimation of hydrogen energy and other renewable energy demand of China's medium and long-term energy is of great significance for China's medium and long-term energy plan. Therefore, based on both China's future economic development and relative economic theory and system dynamics theory, this article analyzes qualitatively the internal factors and external factors of hydrogen energy demand system, and makes the state high and low two assumptions about China's medium and long-term hydrogen demand according to the different speed of China's economic development. After the system dynamic model setting up export and operation, the output shows the data changes of the total hydrogen demand and the four kinds of hydrogen demand. According to the analysis of the output, two conclusions are concluded: The secondary industry, not the tertiary industry (mainly the transportation), should be firstly satisfied by the hydrogen R&D and support of Government policy. Change of Chinese hydrogen demand scale, on basis of its economic growth, can not be effective explained through Chinese economic growth rate, and other influencing factor and mechanism should be probed deeply.  相似文献   

11.
Rapid expansion of highway and jet traffic in China has created a surge of demand for oil products, putting pressure on world energy markets and petroleum product prices. This paper examines trends in freight and passenger traffic to assess how growth in China's transport demand relates to growth in China's economy, as well as the energy intensity of transport. Based on assumptions about demand elasticity and energy intensity, a range of scenarios is developed for China's oil demand through 2020. Incremental oil demand from China's transport sector is then compared with world oil demand projections to assess the likely impact on world oil prices. The finding is that new demand from China's transport sector would likely raise world oil prices in 2020 by 1–3% in reference scenarios or by 3–10% if oil supply investment is constrained.  相似文献   

12.
Evaluation of abatement costs is critical in setting reduction goals and devising climate policy. However, reliable forward-looking assessment of the short-term effects of climate policy remains a major challenge. Using panel data of 30 Chinese provinces during 1997–2015, we first estimate the marginal CO2 abatement costs using a novel data-driven approach, convex quantile regression. Based on the marginal abatement cost estimates and China's plans regarding carbon intensity reduction and economic growth, we present a forward-looking assessment of the abatement costs for Chinese provinces for 2016–2020. Our main finding is that all the Chinese provinces have a negative abatement cost, which means these provinces can benefit from an increase in the absolute level of CO2 emissions despite the constraint on carbon intensity. The magnitudes of economic benefits exhibit a significant regional disparity because some provinces can increase more CO2 emissions than others. However, there is still costly carbon intensity abatement relative to a counterfactual where the provinces meet their economic growth targets but in the absence of the intensity reduction constraints. Policy implications have been proposed to enhance the efficiency and fairness of climate policy in China.  相似文献   

13.
With the high growth urbanization and increasing new urban population, the huge demand for infrastructures and dwellings has become a great challenge for the sustainable development in Chinese cities. The building sector shares one fourth of total energy consumption in the country and plays an important role in reducing the energy consumption and the consequential green house gas (GHG) emissions. Some policies have been issued for promoting the low carbon sustainable development in China's buildings. However, existing barriers especially the investment barriers substantially prevent the low carbon technologies and service from being employed effectively. The carbon trading scheme of cap-and-trade is now widely accepted as one cost-effective way to deal with the climate change issue in the world, and it can be utilized for overcoming the barriers to carbon reduction activities in China's building sector. A new Clean Development Mechanism (CDM) energy performance based method is designed for reducing transaction costs in implementing CDM projects in China's buildings before 2020. And then a “step by step” approach is formed to establish the domestic and international carbon trading mechanism to effectively reduce GHG missions in China's building sector after 2020.  相似文献   

14.
Since the rapid industrialisation, local air pollution has become one of China's most important environmental issues. In consequence, increasingly stringent air pollution control policies have been established by the Chinese government. These policies will inevitably affect China's future electric power investment given the key contribution of this sector to air pollution. This sector is also a key contributor to China’s greenhouse gas emissions and hence climate policy efforts. We present a study exploring what impacts of potential interactions and combinations of different policy efforts for local air pollutant control and carbon mitigation have on China's future electricity generation mix. The study utilises a novel generation portfolio model that explicitly incorporates key uncertainties in future technology costs and different policy approaches including carbon pricing and air emissions control. The findings highlight that China can achieve significant reductions for both greenhouse gas and local air pollutant emissions through a combination of climate change and air pollution control policies. Furthermore, there are potentially significant co-benefits from the perspectives of both air pollutant control and carbon mitigation and, notably, that the co-benefit from a sufficient carbon pricing policy to air pollution emission reductions is much stronger than that from stringent air pollutant control policies to carbon mitigation. Specifically, in order to achieve substantial local air pollution and greenhouse gas mitigation from China's electricity sector, it is necessary to close coal-fired power plants rather than merely seeking to clean their air pollution emissions up.  相似文献   

15.
China has proposed carbon intensity targets and energy development targets for 2030. This study investigates the linkages between these targets and assesses if China can achieve its energy development targets by fulfilling its carbon reduction commitments. To this end, it quantitatively evaluates the impact of carbon emission controls on the Chinese economy using a dynamic computable general equilibrium model. The results show that China's carbon abatement pledge cannot guarantee achievement of all energy objectives. China is likely to reach the upper limit of its carbon intensity target in 2020 and the lower limit in 2030 if current abatement efforts are maintained. To achieve the upper limit in 2030, the carbon price will be CNY 83/tCO2. The energy consumption target for 2020 is likely to be realized but the 2030 target is not. A more stringent price constraint on carbon emissions would be helpful to the achievement of the non-fossil energy target in 2030, but would have a limited promoting effect on natural gas development. Our results reveal the linkages between China's energy targets and carbon emission targets, which is valuable to the cost-effective dual control of energy consumption and carbon emission.  相似文献   

16.
In this paper we investigate CO2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. An assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.  相似文献   

17.
This paper applies a computable general equilibrium model to investigate the impacts of a carbon tax on China's economy and carbon emissions based on China's 2010 Input–Output Table. To obtain robust simulation results, we further disaggregate the energy sectors into eight departments according to energy use characteristics. The empirical results indicate that a moderate carbon tax would significantly reduce carbon emissions and fossil fuel energy consumption and slightly reduce the pace of economic growth. However, a large carbon tax has a significantly negative impact on China's economy and social welfare. Moreover, a large carbon tax would entail marked price changes in China. Of the fossil fuels in use, reducing coal consumption would have the greatest impact on reducing carbon emissions, and the ad valorem duty rate for coal would be the highest after levying a carbon tax because it has the highest carbon emission coefficient. Therefore, China should strive to promote clean coal technology, which may be crucial to reducing carbon emissions. Moreover, levying a carbon tax would improve the use of clean energy, which would be an effective means of reducing carbon emissions. Therefore, the Chinese government should formulate the regulations for and pass a carbon tax as early as possible to achieve its carbon emission abatement target and further contribute to mitigating climate change.  相似文献   

18.
This study analyses a series of carbon dioxide (CO2) emissions abatement scenarios of the power sector in Taiwan according to the Sustainable Energy Policy Guidelines, which was released by Executive Yuan in June 2008. The MARKAL-MACRO energy model was adopted to evaluate economic impacts and optimal energy deployment for CO2 emissions reduction scenarios. This study includes analyses of life extension of nuclear power plant, the construction of new nuclear power units, commercialized timing of fossil fuel power plants with CO2 capture and storage (CCS) technology and two alternative flexible trajectories of CO2 emissions constraints. The CO2 emissions reduction target in reference reduction scenario is back to 70% of 2000 levels in 2050. The two alternative flexible scenarios, Rt4 and Rt5, are back to 70% of 2005 and 80% of 2005 levels in 2050. The results show that nuclear power plants and CCS technology will further lower the marginal cost of CO2 emissions reduction. Gross domestic product (GDP) loss rate in reference reduction scenario is 16.9% in 2050, but 8.9% and 6.4% in Rt4 and Rt5, respectively. This study shows the economic impacts in achieving Taiwan's CO2 emissions mitigation targets and reveals feasible CO2 emissions reduction strategies for the power sector.  相似文献   

19.
Since the metallurgical industry has become the main source of China's carbon dioxide emissions and energy consumption in recent years, low-carbon transition in that industry is of great significance for achieving China's carbon reduction targets. It is generally believed that phasing out fossil fuel subsidies is an effective way to reduce energy-related CO2 emissions since it can increase the energy prices and lower its consumption. This paper aims to investigate whether the energy subsidy removal can promote the low-carbon transition of China's metallurgical industry. Taking inter-fuel and inter-factor substitution effects as the link, we calculate the CO2 mitigation potential on the assumption that the subsidies for each category of fossil energy were eliminated. We find that the metallurgical industry has a sluggish reaction to the changes in energy price. Supposing eliminating the energy subsidies in the period of 2003–2015, the amount of reduced CO2 would be 487.286 million tons, accounting for a slight proportion of the total emissions in the industry. But it is meaningful for the global CO2 mitigation since it approximates the whole CO2 emissions in Norway during the same period. These findings can provide some new insights for the energy subsidy issue and suggest that the additional measures are required to promote the low-carbon transition in China's metallurgical industry rather than just relying on the removal of fossil fuel subsidies.  相似文献   

20.
The mitigation efforts of China are increasingly important for meeting global climate target since the rapid economic growth of China has led to an increasing share in the world's total CO2 emissions. This paper sets out to explore the approach for realizing China's national mitigation targets submitted to the UNFCCC as part of the Copenhagen Accord; that is, to reduce the intensity of CO2 emissions per unit of GDP by 40–45% by 2020, as well as reducing the energy intensity and increasing the share of non-fossil fuel consumption, through regional allocation of emission allowance over China's provinces. Since the realization of China's mitigation target essentially represents a total amount emission allowance allocation problem, an improved zero sum gains data envelopment analysis optimization model, which could deal with the constant total amount resources allocation, is proposed in this study. By utilizing this model and based on several scenarios of China's economic growth, CO2 emissions, and energy consumption, a new efficient emission allowance allocation scheme on provincial level for China by 2020 is proposed. The allocation results indicate that different provinces have to shoulder different mitigation burdens in terms of emission intensity reduction, energy intensity reduction, and share of non-fossil fuels increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号