首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用共沉淀法制备了三元稀土固体超强酸催化剂SO_4~(2-)/Nd_2O_3-ZrO_2-Fe_2O_3,并将其应用于乙酸乙酯的催化合成反应中.以乙酸乙酯的合成酯化率为研究指标,探索了制备三元稀土固体超强酸催化剂42-/Nd_2O_3-ZrO_2-Fe_2O_3的条件.结果表明最佳制备工艺为:焙烧温度550℃,浸渍液浓度1.25 mol·L~(-1),陈化温度-15℃.在此条件下,乙酸乙酯合成酯化率达98.0%以上.同时通过红外光谱法、X射线衍射法、透射电镜法对三元稀土固体超强酸催化剂SO_4~(2-)/Nd_2O_3-ZrO_2-Fe_2O_3进行了表征.结果表明:催化剂表面与SO_4~(2-)形成桥式双配位,具有高催化性能;表面有一定程度的晶态结构,其反应为表面催化;该催化剂其平均粒径小于17 nm,处于纳米尺度.  相似文献   

2.
采用等体积浸渍法制备了杂多酸H3PW12O40/Al2O3催化剂,用IR、XRD、BET等方法对催化剂进行了表征.同时利用常压连续流动的固定床反应器考察该催化剂对甘油制备丙烯醛的工艺条件,重点考察了催化剂的种类、杂多酸的负载量、反应温度等条件对反应的影响.结果表明,由甘油制备丙烯醛的较优条件为:当催化剂为H3PW12O40/Al2O3,负载量为20%,反应温度为360℃时,丙烯醛的摩尔选择性可达87.3%,甘油的转化率为100%.  相似文献   

3.
采用等体积浸渍法分别制备了不同条件下的MgO-Al2O3复合载体和Ni/MgO-Al2O3催化剂,并考察了Ni/MgO-Al2O3用于环戊二烯(CPD)选择加氢制备环戊烯(CPE)的催化性能.采用X射线衍射(XRD)、BET等技术对催化剂进行了表征,考察了焙烧温度对Ni/MgO-Al2O3催化剂结构的影响.研究结果表明,复合载体与催化剂焙烧温度分别为700℃、450℃,NiO负载量为15%时,制备的催化剂比表面积和孔径大小适宜,催化剂的催化性能最好.  相似文献   

4.
以γ-Al2O3为载体,采用浸渍法制备甘油氢解Cu基催化剂。研究了活性组分负载量、载体改性、反应工艺条件等对Cu基催化剂催化甘油氢解制备1,2-丙二醇反应性能的影响。结果表明,Cu负载量为10%时,催化性能较好。进料n(氢气)∶n(甘油)=30∶1、185℃、3.0 MPa下,甘油转化率94.62%,1,2-丙二醇的选择率94.58%。载体采用Zr O2、B2O3或硅钨酸改性,能调整催化剂表面的酸碱性,阻止Cu物种聚集,提高其分散性,有利于催化活性的提高。B2O3改性后制备的10%Cu 5%B2O3/γ-Al2O3催化剂,在甘油水溶液质量分数30.0%、进料n(氢气)∶n(甘油)=30∶1、185℃和3.0 MPa下,甘油的转化率达96.54%,1,2-丙二醇的选择率96.65%。对10%Cu 5%B2O3/γ-Al2O3催化剂,甘油氢解合成1,2-丙二醇的适宜反应条件为温度为185℃、3.0 MPa、原料H2与甘油的物质的量之比为20。甘油水溶液浓度升高,甘油转化率下降,1,2-丙二醇的选择率变化不大,乙二醇的选择率稍有上升。  相似文献   

5.
采用沉淀-浸渍法制备了SO42-/ZrO2-Al2O3固体超强酸,研究了SO42-/ZrO2-Al2O3固体超强酸催化苯甲酸与乙醇的酯化反应,结果表明最适宜的反应条件为:锆铝摩尔比为1:2,醇酸摩尔比为5,焙烧温度500~600℃,焙烧、反应各4h,催化剂的用量为总量的6.64%。此外,还测定了含氯的固体酸的性能,比较了优化后的固体酸与浓硫酸催化性能。  相似文献   

6.
采用沉淀浸渍法制备复合固体超强酸催化剂SO24-/ZrO2-Al2O3-WO3,运用Hammett指示剂法、FT-IR、XRD、SEM、TGA和BET等对相应的催化剂进行表征,并研究了陈化温度、焙烧温度、浸渍液浓度等制备条件以及Al2O3、WO3等不同金属氧化物的引入对SO24-/ZrO2的影响。结果表明,低温陈化的试样具有较强的酸性和催化活性,添加Al2O3可增大催化剂的比表面积和酸度值,引入WO3有利于酸性的增强。复合固体催化剂SO42-/ZrO2-Al2O3-WO3的最佳制备方案是,陈化温度为-10℃、m(Al2O3)/m(ZrO2)为3.5、m(WO3)/m(ZrO2)为1、浸渍液(NH4)2SO4浓度为1.0 mol.L-1、焙烧温度为500℃。该催化剂用于乙酸正丁酯的合成,其酯化率达到98.5%。  相似文献   

7.
以TiO2/堇青石蜂窝陶瓷为载体,V2O5-WO3为活性组分,采用静态浸渍的方法制备了用于氨法选择性催化还原烟气中NO的SCR催化剂,通过XRD和BET对催化剂进行了表征,并考察了该催化剂的应用性能。考察了制备方法、温度、NO浓度、空速和NH3/NO对SCR反应的影响。结果表明,活性组分浸渍溶液中添加助溶剂对制备的催化剂活性有一定的影响,主要影响催化剂表面V2O5的聚集形态,导致脱硝活性下降;活性组分浸渍溶液中添加助溶剂时,可显著提高催化剂的脱硝活性,在反应温度为375℃、NH3/NO=1、空速为10 000h-1的条件下,所制备的催化剂的NO脱除率最高,可达99%。  相似文献   

8.
采用等体积浸渍法制备了杂多酸H3PW12O40/Al2O3催化剂,用IR、XRD、BET等方法对催化剂进行了表征。同时利用常压连续流动的固定床反应器考察该催化剂对甘油制备丙烯醛的工艺条件,重点考察了催化剂的种类、杂多酸的负载量、反应温度等条件对反应的影响。结果表明,由甘油制备丙烯醛的较优条件为:当催化剂为H3PW12O40/Al2O3,负载量为20%,反应温度为360℃时,丙烯醛的摩尔选择性可达87.3%,甘油的转化率为100%。  相似文献   

9.
采用溶胶-凝胶法制备了孔径分布为50~100 nm的γ-Al2O3载体,浸渍法负载助剂CeO2,K2O和MgO.测试了助剂改性的Pd/Al2O3催化剂上CH4催化氧化反应性能.结果表明:助剂提高了Pd/Al2O3催化剂上CH4催化氧化的活性和稳定性.负载20?O2催化剂的反应活性与稳定性较好,其转化率达到90%时的反应温度为351 ℃,转化率达到10%时的反应温度为252 ℃,相比Pd/Al2O3催化剂分别降低了125 ℃和118 ℃.H2-TPR表征结果表明:含有CeO2的催化荆在110~170 ℃之间出现一个PdO物种的还原峰,PdO还原峰的面积与还原温度分别与催化剂的反应活性相一致.  相似文献   

10.
研制了一种替代净化机动车尾气所用贵金属催化剂的纳米钙钛矿型催化剂 .采用溶胶 -凝胶法制备了B位掺杂的纳米钙钛矿型复合氧化物La0 .8Sr0 .2 Co0 .8Mn0 .2 O3,并将其负载于自制的γ -Al2 O3上 ,于微反在线色谱装置上考察了负载后催化剂对丙烯腈合成反应释放气中的丙烷、CO和丙烯的氧化程度及工艺条件 .确定的最佳工艺条件为 :反应温度为 3 5 5℃ ,氧气体积分数为 89%~ 91% ,空速为 1.3× 10 3h- 1 ;在较宽松的反应条件下 ,丙烷、CO及丙烯的转化率均可达90 %以上 .结果表明 ,催化剂La0 .8Sr0 .2 Co0 .8Mn0 .2 O3/γ -Al2 O3被用于完全氧化反应具有很好的催化氧化活性 .  相似文献   

11.
以Fe2O3为活性组分,γ—Al2O3为载体,采用浸渍法制备了Fe2O3/Al2O3催化剂,并将其用于催化降解模拟聚丙烯酰胺(PAM)废水考察了催化剂制备条件对催化活性的影响,得出最佳制备工艺条件为:以Fe(NO3)3水溶液为浸渍液、活性组分负载量20%、焙烧时间3h、焙烧温度500℃在温度为60℃、pH=7.0、催化剂加入量为2g/L,H2O2的质量浓度为0.6g/L的条件下对质量浓度为400mg/L聚丙烯酰胺废水进行降解,反应90min后废水中聚丙烯酰胺相对分子质量降解率最高可达90%以上,CODcr去除率达86%,显示出了较高的催化活性.Fe2O3/Al2O3催化剂经过多次重复使用,催化活性基本没有降低,使用寿命长.  相似文献   

12.
制备S2O8^2-/Al2O3-Fe2O3型固体酸催化剂,用于催化乙酸和正丁醇合成乙酸正丁酯,采用TG/DSC、IR、SEM、XRD等对其结构和性能进行了表征,并研究了焙烧温度对其催化性能的影响。结果表明,不同焙烧温度对S2O8^2-/Al2O3-Fe2O3系列催化剂的结构和性能均产生一定的影响;随着焙烧温度的升高,酯化率呈先增加后降低的趋势,其中500℃焙烧的催化剂具有最佳的催化活性,其酯化率达到90.78%。  相似文献   

13.
采用共沉淀法制备了一系列复合金属氧化物催化剂,并考察了其对尿素与1,2-丙二醇(PG)合成碳酸丙烯酯(PC)反应的催化性能,结果表明,MgO-Al2O3催化活性最高,PC收率为79.2%.优化了MgO-Al2O3的制备条件:以硝酸镁和硝酸铝为前驱体,Mg/Al摩尔比3:1,沉淀剂氢氧化钠和碳酸钠的摩尔比3:1,焙烧温度400℃,老化温度为70℃.此条件制备的MgO-Al2O3催化剂上,PC收率为81.0%.CO2-TPD和BET分析表明催化剂的比表面积是影响其活性的主要因素,XRD和TG-DTA分析表明400℃时制备MgO-Al2O3的前驱体可完全分解.  相似文献   

14.
二氧化硅负载磷钨酸催化苯甲醛与甘油缩合反应   总被引:2,自引:1,他引:1  
采用溶胶—凝胶法制备了不同w(磷钨酸)的H3PW12O40/SiO2(简称PW12/SiO2)固体酸催化剂,用XRD和N2-吸附对PW12/SiO2固体酸催化剂进行了表征,考察了催化剂的焙烧温度、w(磷钨酸)、m(催化剂)、反应时间的影响。结果表明,焙烧温度550℃,w(PW12)10%,m(催化剂)0.5 g,n(苯甲醛)∶n(甘油)=1∶1.1、V(甲苯)15 mL,反应时间2.0 h,苯甲醛的转化率达99.2%。PW12/SiO2固体酸催化剂所具有的独特Keggin阴离子结构和表面酸中心、高表面积和准液相在苯甲醛和甘油的缩合中具有重要的作用。  相似文献   

15.
制备了稀土改性固体超强酸SO24-/TiO2-La2O3环境友好催化剂,并以丁酸丁酯的合成作为探针反应,系统考察了原料摩尔比n(La3+)∶n(Ti4+)、硫酸浸渍时间、焙烧温度、活化时间等制备条件对SO24-/TiO2-La2O3催化活性的影响.实验表明:制备催化剂的适宜条件是原料摩尔比n(La3+)∶n(Ti4+)=1∶34,浸渍浓度为0.8 mol.L-1,浸渍时间为24 h,焙烧温度为480℃,活化时间3 h.利用优化条件下制备的催化剂SO24-/TiO2-La2O3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1∶1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为1 h条件下,10种缩醛(酮)的产率为41.4%~95.8%.  相似文献   

16.
采用共沉淀法制备了用于催化湿式氧化工艺的 C u O - Z n O -C e O2 / A l 2O3 催化剂, 采用 X射线衍射 ( XR D)对催化剂进行了表征, 并以实验室配置的苯酚溶液为目标污染物, 考察了C u O - Z n O -C e O2 / A l 2O3催化剂的活性和稳定性。结果表明, C e的加入有提高催化剂体系分散度的作用; 催化剂中的活性组分 C u、 Z n、 C e分别以 C u O、 Z n O、 C e O2的形式存在, 并成功负载于载体 A l 2O3; 对于初始质量浓度为9 0 0m g / L的实验室配置苯酚溶液, 在反应温度为1 8 0℃, 压力为4MP a, 搅拌速度为3 0 0r /m i n, 催化剂加入量为0. 1g /( 1 0 0mL) , 反应时间3 0m i n时, 化学需氧量( COD) 去除率达到9 5%。  相似文献   

17.
制备催化材料三氧化二铁(Fe2O3),应用XRD、SEM和比表面方法对所制备的材料进行表征,确定该催化剂为a-Fe2O3三方菱心晶体,其外观形貌为粒度分布比较均匀、40-50m的纳米材料,其比表面积为12.87m^2/g。通过对尿素和甲醇合成碳酸二甲酯反应的催化性能研究,得出制备催化材料三氧化二铁(Fe2O3)的最佳工艺条件为:所用的Fe(NO3)3-C2H50H溶液浓度为1mol/L每30mL溶液中分散剂尿素用量1.8g;调节溶液的pH值为5;焙烧温度为500℃。  相似文献   

18.
以皮胶原纤维为模板剂,硫酸锆为锆源,掺杂稀土Nd元素制备SO42-/ZrO2-Nd2O3固体酸。通过TG、XRD、FT-IR、SEM以及N2吸附脱附分析等表征了制备条件对SO42-/ZrO2-Nd2O3固体酸结构的影响。结果表明,SO42-/ZrO2-Nd2O3固体酸较好地保持了模板的纤维结构,添加稀土Nd元素能有效抑制晶粒增长,ZrO2-Nd2O3晶粒尺寸为5.1~11.6 nm,比表面积为63.96 m2/g;以乙酸和正丁醇的酯化反应为模型反应考察SO42-/ZrO2-Nd2O3固体酸的催化活性,催化剂活性较高,重复使用5次,乙酸的转化率仍可达到85%,表现出较好的重复使用性,具有一定的工业应用前景。  相似文献   

19.
针对金催化剂制备过程的复杂性和氯离子残留问题,介绍一种负载型金催化剂Au/Al2O3的制备方法和考察该催化剂在环己烷氧化中的催化性能.采用浸渍-氨洗法制备Au/Al2O3催化剂,并应用电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)和透射电子显微镜(TEM)对其进行表征.以氧气氧化环己烷制备环己酮和环己醇为研究对象,考察金质量分数、反应温度、压力、时间等因素对催化活性的影响.结果表明,随着金质量分数增加,金颗粒增大,催化剂的活性降低,在150℃、1.5MPa条件下反应3h,Au实际质量分数为0.58%的Au/Al2O3催化剂上环己烷转化率为8.96%,环己酮、环己醇和环己基过氧化氢三者的总选择性为93.52%.此外,循环实验表明Au/Al2O3催化剂具有一定的稳定性.  相似文献   

20.
以固体超强酸Fe2O3-TiO2-Nd2O3/S2O3^2-为催化剂,异丁酸和异戊醇为原料合成异丁酸异戊酯,考察了反应条件对酯化率的影响。结果表明,最佳反应条件为:醇酸摩尔比为1:1.4(异丁酸用量为0.1mol),催化剂用量为1.4g,在100℃左右反应4h,其酯化率达78.8%。该催化剂可重复利用且不腐蚀设备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号