首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We show that consensus can be solved by an alternating sequence of adopt-commit objects (Gafni in Proceedings of the seventeenth annual ACM symposium on principles of distributed computing, pp 143–152, 1998; Alistarh et al. in ISAAC, Lecture notes in computer science, vol 5878. Springer, Berlin, pp 943–953, 2009), which detect agreement, and conciliators, which ensure agreement with some probability. We observe that most known randomized consensus algorithms have this structure. We give a deterministic implementation of an m-valued adopt-commit object for an unbounded number of processes that uses lg m + Θ(log log m) space and individual work. We also give a randomized conciliator for any number of values in the probabilistic-write model with n processes that guarantees agreement with constant probability while using one multi-writer register, O(log n) expected individual work, and Θ(n) expected total work. Combining these objects gives a consensus protocol for the probabilistic-write model that uses O(log m + log n) individual work and O(n log m) total work. No previous protocol in this model uses sublinear individual work or linear total work for constant m.  相似文献   

2.
Verifying whether an ω-regular property is satisfied by a finite-state system is a core problem in model checking. Standard techniques build an automaton with the complementary language, compute its product with the system, and then check for emptiness. Generalized symbolic trajectory evaluation (GSTE) has been recently proposed as an alternative approach, extending the computationally efficient symbolic trajectory evaluation (STE) to general ω-regular properties. In this paper, we show that the GSTE algorithms are essentially a partitioned version of standard symbolic model-checking (SMC) algorithms, where the partitioning is driven by the property under verification. We export this technique of property-driven partitioning to SMC and show that it typically does speed up SMC algorithms. A shorter version of this paper has been presented at CAV’04 (R. Sebastiani et al., Lecture Notes in Comput. Sci., vol. 3114, pp. 143–160, 2004). R. Sebastiani supported in part by the CALCULEMUS! IHP-RTN EC project, code HPRN-CT-2000-00102, by a MIUR COFIN02 project, code 2002097822_003, and by a grant from the Intel Corporation. M.Y. Vardi supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435, IIS-9978135, EIA-0086264, and ANI-0216467 by BSF grant 9800096, and by a grant from the Intel Corporation.  相似文献   

3.
This paper concerns the communication primitives of broadcasting (one-to-all communication) and gossiping (all-to-all communication) in known topology radio networks, i.e., where for each primitive the schedule of transmissions is precomputed in advance based on full knowledge about the size and the topology of the network. The first part of the paper examines the two communication primitives in arbitrary graphs. In particular, for the broadcast task we deliver two new results: a deterministic efficient algorithm for computing a radio schedule of length D + O(log3 n), and a randomized algorithm for computing a radio schedule of length D + O(log2 n). These results improve on the best currently known D + O(log4 n) time schedule due to Elkin and Kortsarz (Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 222–231, 2005). Later we propose a new (efficiently computable) deterministic schedule that uses 2D + Δlog n + O(log3 n) time units to complete the gossiping task in any radio network with size n, diameter D and max-degree Δ. Our new schedule improves and simplifies the currently best known gossiping schedule, requiring time , for any network with the diameter D = Ω(log i+4 n), where i is an arbitrary integer constant i ≥ 0, see Gąsieniec et al. (Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity, vol. 3104, pp. 173–184, 2004). The second part of the paper focuses on radio communication in planar graphs, devising a new broadcasting schedule using fewer than 3D time slots. This result improves, for small values of D, on the currently best known D + O(log3 n) time schedule proposed by Elkin and Kortsarz (Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 222–231, 2005). Our new algorithm should be also seen as a separation result between planar and general graphs with small diameter due to the polylogarithmic inapproximability result for general graphs by Elkin and Kortsarz (Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, vol. 3122, pp. 105–116, 2004; J. Algorithms 52(1), 8–25, 2004). The second author is supported in part by a grant from the Israel Science Foundation and by the Royal Academy of Engineering. Part of this research was performed while this author (Q. Xin) was a PhD student at The University of Liverpool.  相似文献   

4.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

5.
Fast Algorithms for the Density Finding Problem   总被引:1,自引:0,他引:1  
We study the problem of finding a specific density subsequence of a sequence arising from the analysis of biomolecular sequences. Given a sequence A=(a 1,w 1),(a 2,w 2),…,(a n ,w n ) of n ordered pairs (a i ,w i ) of numbers a i and width w i >0 for each 1≤in, two nonnegative numbers , u with u and a number δ, the Density Finding Problem is to find the consecutive subsequence A(i *,j *) over all O(n 2) consecutive subsequences A(i,j) with width constraint satisfying w(i,j)=∑ r=i j w r u such that its density is closest to δ. The extensively studied Maximum-Density Segment Problem is a special case of the Density Finding Problem with δ=∞. We show that the Density Finding Problem has a lower bound Ω(nlog n) in the algebraic decision tree model of computation. We give an algorithm for the Density Finding Problem that runs in optimal O(nlog n) time and O(nlog n) space for the case when there is no upper bound on the width of the sequence, i.e., u=w(1,n). For the general case, we give an algorithm that runs in O(nlog 2 m) time and O(n+mlog m) space, where and w min=min  r=1 n w r . As a byproduct, we give another O(n) time and space algorithm for the Maximum-Density Segment Problem. Grants NSC95-2221-E-001-016-MY3, NSC-94-2422-H-001-0001, and NSC-95-2752-E-002-005-PAE, and by the Taiwan Information Security Center (TWISC) under the Grants NSC NSC95-2218-E-001-001, NSC95-3114-P-001-002-Y, NSC94-3114-P-001-003-Y and NSC 94-3114-P-011-001.  相似文献   

6.
The purpose of this work is to indicate that a study of IF-automata (also called, intuitionistic fuzzy automata) can be carried out much on the same lines as the one done for fuzzy automata in Srivastava and Tiwari (Proceedings of 2002 AFSS international conference on fuzzy systems. Lecture notes in artificial intelligence, vol 2275. Springer, Berlin, pp 485–490, 2002). It is also shown that two IF-topologies (also called, intuitionistic fuzzy topologies) can be associated with the state-sets of IF-fuzzy automata whose level topologies have interesting relationships with the topologies introduced by Srivastava and Tiwari (above mentioned) for fuzzy automata.  相似文献   

7.
In this paper we present a new algorithm for adaptive prefix coding. Our algorithm encodes a text S of m symbols in O(m) time, i.e., in O(1) amortized time per symbol. The length of the encoded string is bounded above by (H+1)m+O(nlog 2 m) bits where n is the alphabet size and H is the entropy. This is the first algorithm that adaptively encodes a text in O(m) time and achieves an almost optimal bound on the encoding length in the worst case. Besides that, our algorithm does not depend on an explicit code tree traversal. A preliminary version of this paper appeared in the Proceedings of the 2006 IEEE International Symposium on Information Theory (ISIT 2006). M. Karpinski’s work partially supported by a DFG grant, Max-Planck Research Prize, and IST grant 14036 (RAND-APX). Y. Nekrich’s work partially supported by IST grant 14036 (RAND-APX).  相似文献   

8.
We study the on-line minimum weighted bipartite matching problem in arbitrary metric spaces. Here, n not necessary disjoint points of a metric space M are given, and are to be matched on-line with n points of M revealed one by one. The cost of a matching is the sum of the distances of the matched points, and the goal is to find or approximate its minimum. The competitive ratio of the deterministic problem is known to be Θ(n), see (Kalyanasundaram, B., Pruhs, K. in J. Algorithms 14(3):478–488, 1993) and (Khuller, S., et al. in Theor. Comput. Sci. 127(2):255–267, 1994). It was conjectured in (Kalyanasundaram, B., Pruhs, K. in Lecture Notes in Computer Science, vol. 1442, pp. 268–280, 1998) that a randomized algorithm may perform better against an oblivious adversary, namely with an expected competitive ratio Θ(log n). We prove a slightly weaker result by showing a o(log 3 n) upper bound on the expected competitive ratio. As an application the same upper bound holds for the notoriously hard fire station problem, where M is the real line, see (Fuchs, B., et al. in Electonic Notes in Discrete Mathematics, vol. 13, 2003) and (Koutsoupias, E., Nanavati, A. in Lecture Notes in Computer Science, vol. 2909, pp. 179–191, 2004). The authors were partially supported by OTKA grants T034475 and T049398.  相似文献   

9.
We study approximation algorithms and hardness of approximation for several versions of the problem of packing Steiner trees. For packing edge-disjoint Steiner trees of undirected graphs, we show APX-hardness for four terminals. For packing Steiner-node-disjoint Steiner trees of undirected graphs, we show a logarithmic hardness result, and give an approximation guarantee ofO (√n logn), wheren denotes the number of nodes. For the directed setting (packing edge-disjoint Steiner trees of directed graphs), we show a hardness result of Θ(m 1/3/−ɛ) and give an approximation guarantee ofO(m 1/2/+ɛ), wherem denotes the number of edges. We have similar results for packing Steiner-node-disjoint priority Steiner trees of undirected graphs. Supported by NSERC Grant No. OGP0138432. Supported by an NSERC postdoctoral fellowship, Department of Combinatorics and Optimization at University of Waterloo, and a University start-up fund at University of Alberta.  相似文献   

10.
Summary.  This paper presents a Byzantine Agreement protocol with n=8t+1, optimal number of rounds (namely min{ f+2, t+1} where f is number of actual faults), and messages of linear size (namely mn+O(log n), where m stands for message size). All previous protocols that stop in optimal time and tolerate t=O(n) faults require messages of size at least O(n 2). The new protocol uses a novel technique called Reconstructed Traversal which is based on the Reconstruction Principle and on the Coordinated Traversal protocol. Received: August 1992/Accepted: January 1995l  相似文献   

11.
The problem of representing a setU≜{u 1,...,u m} of read-write variables on ann-node distributed-memory parallel computer is considered. It is shown thatU can be represented among then nodes of a variant of the mesh of trees usingO((m/n) polylog(m/n)) storage per node such that anyn-tuple of variables may be accessed inO(logn (log logn)2) time in the worst case form polynomial inn. This work was supported in part by the Joint Services Electronics Program under Contract F49620-87-C-0044 and by IBM under Agreement 12060043. Earlier versions of these results appeared in theProceedings of the 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, October 1989 and in theProceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, Crete, July 1990.  相似文献   

12.
《Advanced Robotics》2013,27(8):703-715
This article describes an efficient recursive algorithm for the computation of the operational space inertia matrix of an n-link branching robotic mechanism with multiple (m) operational points. The proposed algorithm achieves the complexity of O(nm + m 3). Since m can be considered as a small constant in practice, as the number of links increases, this algorithm performs significantly better than the existing O(n 3 + m 3) symbolic method. The experimental results of this algorithm are presented using real-time dynamic simulation.  相似文献   

13.
We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (SIAM J. Comput. 5:49–60, 1976), Takaoka (Inform. Process. Lett. 43:195–199, 1992), Dobosiewicz (Int. J. Comput. Math. 32:49–60, 1990), Han (Inform. Process. Lett. 91:245–250, 2004), Takaoka (Proc. 10th Int. Conf. Comput. Comb., Lect. Notes Comput. Sci., vol. 3106, pp. 278–289, Springer, 2004), and Zwick (Proc. 15th Int. Sympos. Algorithms and Computation, Lect. Notes Comput. Sci., vol. 3341, pp. 921–932, Springer, 2004). The new algorithm is surprisingly simple and different from previous ones. A preliminary version of this paper appeared in Proc. 9th Workshop Algorithms Data Struct. (WADS), Lect. Notes Comput. Sci., vol. 3608, pp. 318–324, Springer, 2005.  相似文献   

14.
There is no known algorithm that solves the general case of theapproximate string matching problem with the extended edit distance, where the edit operations are: insertion, deletion, mismatch and swap, in timeo(nm), wheren is the length of the text andm is the length of the pattern. In an effort to study this problem, the edit operations were analysed independently. It turns out that the approximate matching problem with only the mismatch operation can be solved in timeO(nm logm). If the only edit operation allowed is swap, then the problem can be solved in timeO(n logm logσ), whereσ=min(m, |Σ|). In this paper we show that theapproximate string matching problem withswap andmismatch as the edit operations, can be computed in timeO(nm logm). Amihood Amir was partially supported by NSF Grant CCR-01-04494 and ISF Grant 35/05. This work is part of Estrella Eisenberg’s M.Sc. thesis. Ely Porat was partially supported by GIF Young Scientists Program Grant 2055-1168.6/2002.  相似文献   

15.
In Dijkstra (Commun ACM 17(11):643–644, 1974) introduced the notion of self-stabilizing algorithms and presented three such algorithms for the problem of mutual exclusion on a ring of n processors. The third algorithm is the most interesting of these three but is rather non intuitive. In Dijkstra (Distrib Comput 1:5–6, 1986) a proof of its correctness was presented, but the question of determining its worst case complexity—that is, providing an upper bound on the number of moves of this algorithm until it stabilizes—remained open. In this paper we solve this question and prove an upper bound of 3\frac1318 n2 + O(n){3\frac{13}{18} n^2 + O(n)} for the complexity of this algorithm. We also show a lower bound of 1\frac56 n2 - O(n){1\frac{5}{6} n^2 - O(n)} for the worst case complexity. For computing the upper bound, we use two techniques: potential functions and amortized analysis. We also present a new-three state self-stabilizing algorithm for mutual exclusion and show a tight bound of \frac56 n2 + O(n){\frac{5}{6} n^2 + O(n)} for the worst case complexity of this algorithm. In Beauquier and Debas (Proceedings of the second workshop on self-stabilizing systems, pp 17.1–17.13, 1995) presented a similar three-state algorithm, with an upper bound of 5\frac34n2+O(n){5\frac{3}{4}n^2+O(n)} and a lower bound of \frac18n2-O(n){\frac{1}{8}n^2-O(n)} for its stabilization time. For this algorithm we prove an upper bound of 1\frac12n2 + O(n){1\frac{1}{2}n^2 + O(n)} and show a lower bound of n 2O(n). As far as the worst case performance is considered, the algorithm in Beauquier and Debas (Proceedings of the second workshop on self-stabilizing systems, pp 17.1–17.13, 1995) is better than the one in Dijkstra (Commun ACM 17(11):643–644, 1974) and our algorithm is better than both.  相似文献   

16.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

17.
We consider the problem of computing a minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Minimum cycle basis are useful in a number of contexts, e.g. the analysis of electrical networks and structural engineering. The previous best algorithm for computing a minimum cycle basis has running time O(m ω n), where ω is the best exponent of matrix multiplication. It is presently known that ω<2.376. We exhibit an O(m 2 n+mn 2log n) algorithm. When the edge weights are integers, we have an O(m 2 n) algorithm. For unweighted graphs which are reasonably dense, our algorithm runs in O(m ω ) time. For any ε>0, we also design an 1+ε approximation algorithm. The running time of this algorithm is O((m ω /ε)log (W/ε)) for reasonably dense graphs, where W is the largest edge weight. A preliminary version of this paper appeared in Kavitha et al. (31st International Colloquium on Automata, Languages and Programming (ICALP), pp. 846–857, 2004). T. Kavitha and K.E. Paluch were in Max-Planck-Institut für Informatik, Saarbrücken, Germany, while this work was done.  相似文献   

18.
Deterministic collect algorithms are presented that are adaptive to total contention and are efficient with respect to both the number of registers used and the step complexity. One of them has optimal O(k) step and O(n) space complexities, but assumes that processes’ identifiers are in O(n), where n is the total number of processes in the system and k is the total contention. The step complexity of an unrestricted name space variant of this algorithm remains O(k), but its space complexity increases to O(n 2).  相似文献   

19.
Let P be a set of n weighted points. We study approximation algorithms for the following two continuous facility-location problems. In the first problem we want to place m unit disks, for a given constant m≥1, such that the total weight of the points from P inside the union of the disks is maximized. We present algorithms that compute, for any fixed ε>0, a (1−ε)-approximation to the optimal solution in O(nlog n) time. In the second problem we want to place a single disk with center in a given constant-complexity region X such that the total weight of the points from P inside the disk is minimized. Here we present an algorithm that computes, for any fixed ε>0, in O(nlog 2 n) expected time a disk that is, with high probability, a (1+ε)-approximation to the optimal solution. A preliminary version of this work has appeared in Approximation and Online Algorithms—WAOA 2006, LNCS, vol. 4368.  相似文献   

20.
Tree Expressions for Information Systems   总被引:1,自引:0,他引:1       下载免费PDF全文
The discernibility matrix is one of the most important approaches to computing positive region, reduct, core and value reduct in rough sets. The subject of this paper is to develop a parallel approach of it, called "tree expression". Its computational complexity for positive region and reduct is O(m^2 × n) instead of O(m × n^2) in discernibility-matrix-based approach, and is not over O(n^2) for other concepts in rough sets, where rn and n are the numbers of attributes and objects respectively in a given dataset (also called an "information system" in rough sets). This approach suits information systems with n ≥ m and containing over one million objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号