首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new ligand N-benzyl-2-{2’-[(benzyl-ethyl-carbamoyl)-methoxy]-dinaphthalene-2-yloxy}-N-ethyl-acetamide(L) and its complexes of rare earth picrates were synthesized.The complexes were characterized by elemental analysis,IR,UV-vis spectra and conductivity measurements.The fluorescence properties of the europium complex in solid state and CHCl3,ethyl acetone,acetonitrile and DMF were investigated.Under the excitation,the europium complex exhibited characteristic emissions of europium.The lowest triplet state energy level of the ligand indicated that the triplet state energy level of the ligand matched better to the resonance level of Eu(Ⅲ) than Tb(Ⅲ) ion.  相似文献   

2.
The new ligand N-benzyl-2-{2'-[(benzyl-ethyl-carbamoyl)-methoxy]-dinaphthalene-2-yloxy}-N-ethyl-acetamide (L) and its complexes of rare earth picrates were synthesized. The complexes were characterized by elemental analysis, IR, UV-vis spectra and conductivity measurements. The fluorescence properties of the europium complex in solid state and CHCl3, ethyl acetone, acetonitrile and DMF were investigated. Under the excitation, the europium complex exhibited characteristic emissions of europium. The lowest triplet state energy level of the ligand indicated that the triplet state energy level of the ligand matched better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

3.
Two ligands 2,2′-[2,3-naphthylenebis(oxy)]-bis(N-benzyl(acetamide))(L1) and 2,2′-[2,3-naphthylenebis (oxy)]-bis(N,N-diphenyl (acetamide))(L2) and their europium(Ⅲ) picrate complexes were synthesized. The complexes were characterized by elemental analysis, infra-red (IR), thermogravimetry and differential thermal analysis (TG-DTA) and molar conductivity. Fluorescent experiments showed that the resonance level of the Eu) matched better to the triplet state energy level of the ligand L2 than that of the ligand L1 and the fluorescence in-tensities of the complexes were reduced with the raising coordination ability of solvent. In addition, the interactions between the complexes and DNA were studied by means of spectrometry and cyclic voltammetry. The results suggested that the complexes could bind to DNA through intercalation and the complex 1 binded to DNA more strongly than the complex 2.  相似文献   

4.
The synthesis of five new psoralen derivatives is described. Three of these, 4'-hydroxymethyl-4,5',8-trimethylpsoralen, 4'-methoxymethyl-4,5',8-trimethylpsoralen, and 4'-aminomethyl-4,5',8-trimethylpsoralen hydrochloride, and characterized with respect to their photoreactivity with DNA and RNA. They are found to be greatly superior to 4,5',8-trimethylpsoralen and 8-methoxypsoralen, the two commonly used psoralens, in their abilities to saturate the photoreactive sites on DNA and RNA without repeated addition of reagent. A simplified mechanism for the photoreaction of psoralens with nucleic acids is presented and provides a basis for understanding the superior properties of these compounds. The compounds have superior reactivity not only with isolated DNA and RNA but also in viruses and in cells. Psoralens are shown for the first time to cross-link RNA double helices.  相似文献   

5.
Sinceaza crownethershowsspecialcoordinationpropertiestotransitionmetalandheavymetalions[1,2 ] ,therearemanyreportsofthecomplexesinhost guestchemistry ,molecularrecognition[3 ,4] andionophoreinmembranetransportation[5] ,butthereislittlereportontheirrareearthscomplexesandthefluorescenceaboutthecomplexes[6] ,andthefluorescenceintensityoftheircomplexesarenotverystrong .Weinsetbenzoylgroupintothemacrocycle ,expectingthatitsrareearthscomplexeshavebetterfluorescenceproperties .Inthispaperthesynthesis…  相似文献   

6.
The DNA bonding sites of two pyrrolo[1,4]benzodiazepine derivatives--tomaymycin (Tma) and anthramycin (Atm)--were identified by exonuclease III (exo III) digestion, lambda exonuclease (lambda exo) digestion, and UvrABC nuclease incision analysis. exo III digestion stalls 4-5 bases 3' to a drug-DNA adduct. While this method can recognize most of the Atm-and Tma-DNA modification sites, it is complicated in that exo III digestion is also stalled by certain unmodified sequences and by drug bound to the opposite strand. lambda exo digestion stalls 1-2 bases 5' to a drug-DNA adduct. The lambda exo method also recognizes most of the drug-DNA bonding sites and renders a cleaner background; however, it is also affected by opposite-strand drug bonding. Due to their intrinsic digestion polarities, these two exonucleases tend to be stalled by the drug-DNA adduct at one end of the DNA molecule. Purified UvrA, UvrB, and UvrC proteins acting together make dual incisions 6-8 bases 5' and 4 bases 3' to a Atm- or Tma-DNA adduct. This nuclease complex recognizes all the Tma- and Atm-DNA bonding sites identified by exonuclease digestion methods, and all the UvrABC incisions can be attributed to drug modifications in the incised DNA strand. The degree of UvrABC nuclease incision increases with increasing drug concentrations for DNA modification. Using the UvrABC incision method, we have identified the sequence preference of Tma- and Atm-DNA adduct formation in three DNA fragments, and we have found that these two drugs have different preferred sites for adduction. Both Tma- and Atm-DNA bonding is strongly influenced by the 5' and 3' neighboring bases; the orders of preferred 5' and 3' bases for Tma are A > G, T > C, and A, C > G, T, and for Atm the orders are A > G > T > C and A > G > T, C. The preferred triplets for Tma bonding are -AGA- > -GGC-, -TGC-, and AGC- and for Atm are -AGA-, -AGG- > -GGA-, -GGG-.  相似文献   

7.
The novel platinum drugs [{trans-PtCl(NH3)2}2H2N(CH2)nNH2]2+ (1,1/t,t) are currently undergoing preclinical development. The bifunctional DNA binding of these agents allows comparison with that of cisplatin [Farrell et al. (1995) Biochemistry, 34, 15480]. The major DNA lesion of cisplatin, the 1,2-d(GpG) intrastrand adduct, produces a rigid, directed bend 30-35 degrees into the major groove of DNA. We have now completed a structural analysis of the corresponding adduct formed with the dinuclear complexes. Gel retardation assays on 15-22 bp oligonucleotides containing a central d(TG*G*T) site show that the (Pt,Pt)-intrastrand adducts result in a flexible nondirectional bend. This bend is essentially independent of chain length (n = 2, 4, 6). Chemical reactivity assays indicated a hypersensitivity of the thymine 5' to the adduct and an enhanced sensitivity of the 3'-thymine to OsO4. 2D 1H NMR studies on a d(TG1G2T) adduct of [{trans-PtCl(NH3)2}2H2N(CH2)6NH2]2+ have delineated the structural features responsible for these observations. In contrast to the cisplatin adduct, which displays a 100% N-type sugar of the 5'-G and an anti base conformation of the platinated bases in both solid state and solution, the dinuclear adduct does not display the typical N-type sugar pucker. The base orientations are anti (5'-T), anti (G1), anti/syn (G2), and anti (3'-T) while the sugar conformations are N, S/N, N, and S, respectively. The 5'-T remains stacked with its guanine neighbor while the 3'-T becomes unstacked, a reverse of the situation observed for cis-DDP.  相似文献   

8.
The possibility of using sodium-23 spin-lattice relaxation rate measurements to probe the interaction modes of Ru11 polyazaaaromatic complexes with DNA is investigated. The following complexes are considered: Ru(phen)3(2+) (phen = 1.10-phenanthroline), Ru(phen)2HAT2+ (HAT = 1,4,5,8,9,12-hexaazatriphenylene), and Ru(diMeTAP)3(2+) (diMeTAP = 2,7-dimethyl-1,4,5,8-tetraazaphenanthrene). The addition of Ru(diMeTAP)3(2+) to a solution of NaDNA leads to a decrease in the sodium-23 spin-lattice relaxation rate (R1) similar to the effect observed upon addition of Mg2+. This indicates that Ru(diMeTAP)3(2+) interacts like Mg2+ with DNA and consequently that the electrostatic interaction dominates the association with DNA, Ru(phen)3(2+) and Ru(phen)2HAT2+ diminish R1 more efficiently than Mg2+, in a manner similar to ethidium bromide, which is known for its intercalation properties. Thus interactions other than electrostatic occur between these two complexes and DNA. These results are in agreement with data obtained from other techniques, according to which Ru(phen)3(2+) and Ru(phen)2HAT2+ are located partially inside the DNA double helix, in contrast to Ru(diMeTAP)3(2+) which remains in the ionic atmosphere around the phosphate backbone.  相似文献   

9.
A new ligand, N,N-BIS (6-metyl-2-pyridinecarboxylamide-N-oxide)-1,2-ethane (L) and six lanthanide(III) complexes (RE=La, Sm, Eu, Tb, Gd, Yb) were synthesized and characterized in detail. The results indicated that the composition of the binary complexes was determined as [REL(H2O)(NO3)2]NO3·nH2O (n=0–2), and the Eu3+ complex had bright red fluorescence in solid state. Three complexes of Eu3+, Tb3+, and Gd3+ with 6-methylpicolinic acid N-oxide (L') were also synthesized. The relative intensity of sensitized luminescence for Eu3+ increased in the following order: L>L'. The phosphorescence spectra of the Gd3+ complexes at 77 K were measured. The energies of excited triplet state for the ligands were 20704 cm−1 (L) and 20408 cm−1 (L'). The facts that the ligands sensitized Eu3+ strongly and the order of the emission intensity for Eu3+ complexes were explained by ΔE(T-5D). This meant that the triplet energy level of the ligand was the main factor to influence RE3+ luminescence.  相似文献   

10.
采用Claisen缩合反应合成了一种新型的β-二酮化合物1-(4-溴苯)-3-苯基丙烷-1,3-二酮(L),并以其为第一配体,邻菲罗啉(phen)为第二配体,合成出新型稀土铕,铽二元及三元配合物。通过元素分析、红外光谱、紫外光谱、荧光光谱对合成的配体及配合物进行了表征。元素分析确定了配合物的组成。红外光谱的分析表明第一配体L中的氧原子以及第二配体phen中的氮原子与稀土离子进行了配位。紫外光谱表明第一配体L为能量的给体,第二配体phen起协同作用。通过荧光光谱研究了配合物的发光性质,结果显示三元配合物的发光强度大于二元配合物,三元配合物Eu(L)3phen表现出Eu3+的特征发射,在593,615,653,701 nm处的发射峰分别归属于Eu3+的5D0→7Fj(j=1,2,3,4)能级间的跃迁,并且以位于615 nm处的5D0→7F2电子跃迁所发出的荧光强度最大;而铽配合物中并没有出现Tb3+的特征发射。进一步的研究表明,这是由于配体L的最低三重态能级较适合Eu3+的发射能级,配体L吸收的能量可以有效的通过Antenna效应传递给稀土中心离子,使得三元配合物Eu(L)3phen的发光强度较大。  相似文献   

11.
A reactive Tb(III) complex with 2-aminobenzoic acid(2-ABAH) and acrylonitrile(AN) as ligands was synthesized.The structure of the complex was characterized by elemental analysis and Fourier transform infrared spectrometry(FT-IR).The results indicated that the ligands were coordinated with Tb(III) ion.Thermal gravity-derivative thermogravimetric(TG-DTG) analysis indicated that the complex kept stable up to 198 oC.Luminescence properties were investigated by UV-vis absorption spectra and fluorescence spectra.The results suggested that being excited at 361 nm,the complex exhibited characteristic emission of Tb(III) ion,revealing that the complex could be excited by 365 nm ultraviolet chip.The HOMO and LUMO,ΔE(HOMO-LUMO),molecular frontier orbital,and the singlet state and triplet energy state levels of the ligands were calculated at the B3LYP/6-31+G(d) level.The results indicated that intramolecular energy transfer mechanism followed Dexter exchange energy transfer theory.Both the calculation for excited state of ligand and energy transfer mechanism could provide the theoretical basis for the design of high luminescent materials of rare earth complexes with organic ligands.  相似文献   

12.
Cisplatin analogues were synthesised that consisted of platinum(II) diamine complexes tethered via a polymethylene chain ( n = 3, 5, 8 and 10) to a phenanthridinium cation. Both chloro and iodo leaving groups were examined. DNA adduct formation was quantitatively analysed using a linear amplification system with the plasmid pGEM-3Zf(+). This system utilised Taq DNA polymerase to extend from an oligonucleotide primer to the damage site. This damage site inhibited the extension of the DNA polymerase. The products were electrophoresed on a DNA sequencing gel enabling adduct formation to be determined at base pair resolution. The damage intensity at each site was determined by densitometry. The platinum phenanthridinium complexes were shown to damage DNA at shorter incubation times than cisplatin. To produce similar levels of damage, an 18 h incubation was required for cisplatin compared to 30 min for the n = 3 platinum phenanthridinium complexes; this indicates that the intercalating chromophore causes a large increase in the rate of platination. A reaction mechanism involving direct displacement of the chloride by the N-7 of guanine may account for the rate increase. These results indicate that further development of these compounds could lead to more effective cancer chemotherapeutic agents.  相似文献   

13.
The DNA binding and interstrand cross-linking properties of the dinuclear platinum complex [?cis-Pt(NH3)2Cl?2bpsu](NO3)2 (bpsu is 4,4'-dipyridyl sulfide) (II) and the mononuclear complex [cis-Pt(NH3)2Cl(4-methylpyridine)]NO3 (I) were compared with those of [?cis-Pt(NH3)2Cl?2H2N(CH2)4NH2](NO3)2 (III) in order to understand the mode of action of complexes I and II. Both compound I and compound II caused significantly different changes of conformation in poly(dG-dC) x poly(dG-dC) than compound III did. Studies of DNA binding, interstrand cross-linking and fluorescence assay suggest that compound I monofunctionally binds to DNA and compound II bifunctionally binds to DNA, that the dinuclear platinum complex II more efficiently interacts with DNA compared to its monomeric analog, and that platinum I and II complexes both interact with DNA in a non-intercalative mode. All the results indicate that the mode of action of the dinuclear complex II is different from that of the mononuclear complex I.  相似文献   

14.
We synthesized a novel platinum drug, cis-[PtCl(NH3)2(N7-ACV)]+, in which ACV is the antiviral drug acyclovir [a deoxyriboguanosine analogue, 9-(2-hydroxyethoxymethyl)guanine]. This new compound exhibits antiviral efficacy in vitro and exhibits an antitumor activity profile different from that of cisplatin [Metal-Based Drugs 2:249-256 (1995)]. To contribute to understanding the mechanisms underlying biological activity of this new compound, we studied modifications of natural and synthetic DNAs in cell-free media by cis-[PtCl(NH3)2(N7-ACV)]+ by various biochemical and biophysical methods. The results indicated that the major DNA adduct of cis-[PtCl(NH3)2(N7-ACV)]+ was a stable monofunctional adduct at guanine residues. In contrast to DNA adducts of other monodentate and clinically ineffective platinum(II) compounds, the adducts of cis-[PtCl(NH3)2(N7-ACV)]+ terminated in vitro DNA and RNA synthesis. In addition, although DNA adducts of cis-[PtCl(NH3)2(N7-ACV)]+ and cisplatin were different, some properties of DNA modified by either compound were qualitatively similar. Such similarities were not noticed if DNA modifications by other ineffective monofunctional platinum(II) complexes were investigated. Thus, the DNA binding mode of monofunctional cis-[PtCl(NH3)2(N7-ACV)]+ was different from that of other monofunctional but ineffective platinum(II) complexes. It has been suggested that the unique capability of cis-[PtCl(NH3)2(N7-ACV)]+ to modify DNA may be relevant to a distinct antitumor efficiency of this novel drug in comparison with cisplatin. It also has been suggested that at least some aspects of DNA interactions of cis-[PtCl(NH3)2(ACV)]+ revealed in the current study could be exploited in the search for and development of new antiviral platinum complexes containing, as a part of the coordination sphere, antiviral nucleosides.  相似文献   

15.
Based on the consistency of the in vivo and in vitro interactions of drugs with DNA, a fluorimetric method has been developed as a new in vitro method for preliminary screening of antitumour agents. This method was tested using Schiff bases synthesized from salicylaldehyde with 1-alanine, 1-asparagine and 1-histidine, and complexes of these Schiff bases with Cu(II), Zn(II), Ni(II) and Sn(IV) as potential antitumour agents. The study of the interaction of the complexes with DNA by a fluorescence probe ethidium bromide (EthBr)-DNA system indicated the parallelism between the binding constants and antineoplastic ratios. The relationship between structure and antitumour activity was investigated.  相似文献   

16.
The major human apurinic/apyrimidinic (AP) endonuclease (class II) is known to cleave DNA 5' adjacent to an AP site, which is probably the most common DNA damage produced hydrolytically or by glycosylase-mediated removal of modified bases. p-Benzoquinone (pBQ), one of the major benzene metabolites, reacts with DNA to form bulky exocyclic adducts. Herein we report that the human AP endonuclease directly catalyzes incision in a defined oligonucleotide containing 3,N4-benzetheno-2'-deoxycytidine (pBQ-dC) without prior generation of an AP site. The enzyme incises the oligonucleotide 5' to the adduct and generates 3'-hydroxyl and 5'-phosphoryl termini but leaves the pBQ-dC on the 5' terminus of the cleavage fragment. The AP function of the enzyme is not involved in this action, as no preexisting AP site is present nor is a DNA glycosylase activity involved. Nicking of the pBQ-dC adduct also leads to the same "dangling base" cleavage when two Escherichia coli enzymes, exonuclease III and endonuclease IV, are used. Our finding of this unusual mode of action used by both human and bacterial AP endonucleases raises important questions regarding the requirements for substrate recognition and catalytic active site(s) for this essential cellular repair enzyme. We believe this to be the first instance of the presence of a bulky carcinogen adduct leading to this unusual mode of action.  相似文献   

17.
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.  相似文献   

18.
19.
The non-covalent complexes between some DNA-binding drugs and duplex oligodeoxynucleotides were studied by ionspray mass spectrometry, with the aim of evaluating the suitability of this technique to screen rapidly a series of drugs exerting their activity through non-covalent binding to specific base sequences of DNA. Two classes of drugs were considered, distamycins (which show affinity for the minor groove of DNA) and anthracyclines (which interact through intercalation between bases). For the former, d(CGCGAATTCGCG)2 was chosen as the model oligodeoxynucleotide. Following optimization of sample preparation and instrumental conditions, the complexes of different distamycins were observed; depending on the ligand considered, 1:1 or 2:1 complexes were formed preferentially. A semi-quantitative evaluation of the relative affinities was made by measuring the ratio of the complexes signals to those of the duplex, and also by competitive binding with equimolar amounts of distamycin. For anthracyclines, the daunorubicin-d(CGATCG)2 complex was chosen as the model for a preliminary mass spectrometric study; however, the signals of the duplex and the complex were very low compared with the monomer signal. Since the complex was known to be stable in solution, this was ascribed to gas-phase instability, probably caused by electrostatic repulsion between negatively charged phosphate groups.  相似文献   

20.
A novel potential tridentate Schiff base was prepared by condensing equimolar quantities of 2-hydroxyacetophenone and 2-aminopyrimidine in methanol. This ligand was versatile in forming a series of complexes with lanthanide ions such as La(III), Pr(III), Nd(III), Sm(III), Gd(III), Dy(III) and Yb(III). The ligand and the metal complexes were characterized through elemental analysis, molar conductance, UV-Visible, IR, 1H NMR, and mass spectral studies. The spectral studies indicated that the ligand was coordinated to the metal ion in neutral tridentate fashion through the azomethine nitrogen, one of the nitrogen atoms in the pyrimidine ring and the phenolic oxygen without deprotonation. Thermal decomposition and luminescence property of lanthanum(III) complex were also examined. The X-ray diffraction patterns showed the crystalline nature of the ligand and its lanthanum(III) complex. The DNA cleavage studies of the ligand and the metal complexes were carried out and it was observed that the lanthanum(III) and neo-dymium(III) complexes cleaved the pUC19 DNA effectively. The ligand and the metal complexes were screened for their antibacte-rial activities. The metal complexes were found to be more potent bactericides than the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号