首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Faiz  B.S. Mun 《Thin solid films》2006,515(4):1377-1379
X-ray absorption near edge structure spectroscopy has been used to investigate the electronic and atomic structure of vanadium-doped ZnO thin films obtained by reactive plasma. The results show no sign of metallic clustering of V atoms, +4 oxidation state of V, 4-fold coordination of Zn in the films, and a secondary phase (possibly VO2) formation at 15% V doping. O K edge spectra show V 3d-O 2p and Zn 4d-O 2p hybridization, and suggest that V4+ acts as electron donor that fills the σ* band.  相似文献   

2.
Undoped and chromium doped titanium oxide thin films were fabricated by spray pyrolysis by using a solution of titanium tetrachloride and ethyl alcohol. The films have been deposited on heated glass substrates at 373 K. After annealing for 90 min at 723 K, the initially amorphous films became polycrystalline with a predominant anatase structure and average crystallite sizes depending on dopant (Cr) concentration. The repartition of chromium impurities in the matrix of titanium oxide films, analyzed by electron paramagnetic resonance and X-ray photoelectron spectroscopy showed that the entrance of chromium into the anatase structure is mainly achieved by substitution. A decrease in unit cell parameters ratio (c/a) with the increase of chromium content sustains this assertion. The wetting properties of the titanium oxide films were evaluated from contact angle measurements between de-ionized water and films surface during- and post-irradiation with UV light. The correlation between the concentration of the dopant, film structure, surface morphology and wettability characteristics is discussed.  相似文献   

3.
Thin films of molybdenum doped indium oxide (IMO) were deposited on glass at room temperature using an in-built three-source RF magnetron sputtering. The films were studied as a function of oxygen volume percentage (O2 vol. %; ranging from 0.0 to 17.5%) in the sputtering chamber. The as-deposited amorphous films were crystallized on post-annealing. The as-deposited films are low conducting and Hall coefficients were undetectable; whereas post-annealed films possess fairly high conductivity. The lowest transmittance (11.96% at 600 nm) observed from the films deposited without oxygen increased to a maximum of 88.01% (3.5 O2 vol. %); whereas this transmittance was decreased with the increasing O2 vol. % to as low as 81.04% (15.6 O2 vol. %); a maximum of 89.80% was obtained from the films annealed at 500 °C in open air (3.5 O2 vol. %). The optical band gap of 3.80 eV obtained from the films deposited without oxygen increased with increasing O2 vol. % to as high as 3.91 eV (17.5 O2 vol. %). A maximum of 3.92 eV was obtained from the films annealed at 300 °C in N2:H2 gas atmosphere (17.5 O2 vol. %).  相似文献   

4.
Tae Ho Jun 《Materials Letters》2010,64(21):2287-2289
Cr-doped TiO2 thin films with different band gaps were prepared. Higher Cr doping was beneficial to the formation of the rutile-TiO2 phase over the anatase-TiO2 phase. A 4.8% Cr-doped thin film indicated a band gap of 2.95 eV, which was lower than the band gap of the rutile-TiO2. Cr doping was accompanied by the formation of not only the rutile-TiO2 phase but also the Cr2O3 phase, lead to the degradation of the hydrophilicity. The TiO2 thin films with the mixed phase were not desirable to improve the hydrophilicity.  相似文献   

5.
We present the relationship between parameters of reactive RF diode sputtering from a zinc oxide (ZnO) target and the crystalline, electrical and optical properties of n-/p-type ZnO thin films. The properties of the ZnO thin films depended on RF power, substrate temperature and, particularly, on working gas mixtures of Ar/O2 and of Ar/N2. Sputtering in Ar+O2 working gas (up to 75% of O2) improved the structure of an n-type ZnO thin film, from fibrous ZnO grains to columnar crystallites, both preferentially oriented along the c-axis normally to the substrate (〈0 0 2〉 direction). These films had good piezoelectric properties but also high resistivity (ρ≈103 Ω cm). ZnO:N p-type films exhibited nanograin structure with preferential 〈0 0 2〉 orientation at 25% N2 and 〈1 0 0〉 orientation for higher N2 content. The presence of nitrogen NO at O-sites forming NO-O acceptor complexes in ZnO was proven by SIMS and Raman spectroscopy. A minimum value of resistivity of 790 Ω cm, a p-type carrier concentration of 3.6×1014 cm−3 and a Hall mobility of 22 cm2 V−1 s−1 were obtained at 75% N2.  相似文献   

6.
X射线吸收精细结构谱在材料科学中的应用   总被引:5,自引:0,他引:5  
杨修春  刘维学  M.Dubiel  D.Ehrt  徐政 《功能材料》2005,36(8):1146-1150
简单介绍了X射线吸收精细结构谱的物理基础,数据处理方法,讨论了X射线吸收精细结构谱在元素组成,价态和结构环境方面的分析结果。结果显示,在钠钙硅酸盐平板玻璃中,二价铁离子和三价铁离子同时存在。在Ag-Na离子交换后,二价铁离子被银离子氧化成三价铁离子。当Ti2O3和锐钛矿被分别掺入硼硅酸盐玻璃后,钛离子主要以四价存在,Ti^4+离子占据五重配位点。在玻璃中同时掺入锐钛矿和还原剂C,诱导三价钛离子生成,三价钛离子占据八面体配位点,使得Ti K边预边峰高度降低。包裹在钠钙硅酸盐玻璃中的银纳米颗粒界面存在张应力,使得银晶格膨胀,银原子存在两种结构环境:Ag-O配位和Ag-Ag配位。孤立银原子的存在,使得最近邻Ag-Ag配位数显著降低。  相似文献   

7.
High-index low-loss Gallium Phosphide thin films for visible light have been produced by radio frequency magnetron sputtering in an argon environment. This broadens the high refractive index limit of transparent optical materials using a physical deposition process. Energy-dispersive x-ray analysis and spectroscopic ellipsometry were used to characterize the stoichiometry and optical properties. A post-deposition high-temperature anneal was found to be necessary to restore the proper stoichiometric ratio and to reduce the absorption. The annealing conditions were optimized by an in-situ fiber-optic transmission spectrum monitoring system. The films exhibit a high refractive index (N = 3.23) and a low extinction coefficient (K = 0.029) at 633 nm. Such high index GaP films have broad applications in nanophotonic device designs.  相似文献   

8.
BiFeO3 (BFO) films were grown on LaNiO3-coated Si substrate by a RF magnetron sputtering system at temperatures in the range of 300-700 °C. X-ray reflectivity and high-resolution diffraction measurements were employed to characterize the microstructure of these films. For a substrate temperature below 300 °C and at 700 °C only partially crystalline films and completely randomly polycrystalline films were grown, whereas highly (001)-orientated BFO film was obtained for a substrate temperature in the range of 400-600 °C. The crystalline quality of BFO thin films increase as the deposition temperature increase except for the film deposited at 700 °C. The fitted result from X-ray reflectivity curves show that the densities of the BFO films are slightly less than their bulk values. For the BFO films deposited at 300-600 °C, the higher the deposition temperature, the larger the remnant polarization and surface roughness of the films present.  相似文献   

9.
The relations between the sputtering parameters and the crystalline microstructure of ZnO thin films are presented. The energetic bombardment of substrate by neutral atoms, ions and electrons during sputtering is characterized by total energy flux density which affects the film. This parameter can be estimated by RF power, substrate bias voltage and concentration of reactive gases. Substrate temperature and total energy flux density are the major parameters which have a significant influence on ZnO thin film crystalline structure.  相似文献   

10.
桑敏  刘发民  丁芃  毋二省  王天民 《功能材料》2005,36(7):1126-1130
Transparent titania thin films were prepared on glass substrates by radio frequency magnetron sputtering from TiO2 ceramic target. The structure and morphology of those films with different sputtering power and substrate temperature has been measured with X-ray diffractometer (XRD) and atomic force microscope (AFM). It was found that the films were anatase and a mix of anatase-rutile with different condition. The transmission of the films has been studied by using UV-VIS-NIR spectrometer. It shows absorption edge has a little red shift with the increase of sputtering power and substrate temperature. The photocatalytic activity of the films was tested on the degradation of Rhodamine B solution. T.he highest degradation efficiency in our experiment was obtained in the film deposited at 550℃ and 130W.  相似文献   

11.
利用固相反应制备的ZnO-Li_(2.2%)陶瓷靶和RF射频磁控溅射技术在Si(100)基片上制备了高度c轴择优取向的ZnO薄膜,XRD和电性能分析表明掺杂Li离子改善了ZnO靶材的结构和性能,同时研究了不同RF溅射温度对ZnO薄膜结构与取向的影响;然后采用sol-gel前驱单体薄膜制备方法,以ZnO为过渡层淀积PZT薄膜,探讨高度c轴(002)择优取向ZnO薄膜对PZT薄膜结构与性能的影响,实验发现在PZT/ZnO异质结构中,致密、均匀和高度c轴择优取向的ZnO可作为晶核,促进PZT钙钛矿结构转化、晶粒(110)择优取向生长,相应降低PZT薄膜的退火温度.  相似文献   

12.
Cuprous oxide thin films were produced on soda-lime glass substrates using reactive RF-magnetron sputtering. The influence of deposition parameters and temperature on composition and structural properties of the single layers was extensively studied using X-ray diffraction. The control over microstructure and residual stresses is possible by changing reactive gas pressure and deposition temperature. Fiber textured Cu2O films showing a [100] preferred orientation and a fraction of untextured domains can be obtained: suitable modeling taking this microstructure into account shows the presence of a strong compressive stress decreasing with the temperature. Highly reproducible films can be obtained, whose microstructure is preserved when sputtering on tungsten and zinc oxide substrates.  相似文献   

13.
Transparent conducting Titanium-doped zinc oxide thin films (TZO) with high transparency and relatively low resistivity were firstly deposited on water-cooled polyethylene terephthalate (PET) substrates at room temperature by DC magnetron sputtering. The microstructure, optical and electrical properties of the deposited films were investigated and discussed. The XRD patterns show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity decreases when the sputtering power increases from 45 W to 60 W. However, as the puttering power continue increases from 60 W to 90 W, the electrical resistivity increases rapidly. When the puttering power is 60 W, the films deposited on PET substrate have the lowest resistivity of 4.72 × 10−4 Ω cm and a relatively high transmittance of above 92% in the visible range.  相似文献   

14.
Ultrathin films of MgO (~ 6 nm) were deposited on Si(100) using dual ion beam sputtering in different partial pressures of oxygen. These thin films were characterized by X-ray photoelectron spectroscopy (XPS) for chemical state analysis and conducting atomic force microscopy for topography and local conductivity map. No trace of metal Mg was evidenced in these MgO films. The XPS analysis clearly brought out the formation of oxygen interstitials and Mg(OH)2 primarily due to the presence of residual water vapors in the chamber. An optimum value of oxygen partial pressure of ~ 4.4 × 10− 2 Pa is identified with regard to homogeneity of film and stoichiometry across the film thickness (O:Mg::0.93-0.97). The local conductivity mapping investigations also established the film homogeneity in respect of electrical resistivity. Non-linear local current-voltage curves revealed typical tunneling characteristics with barrier width of ~ 5.6 nm and barrier height of ~ 0.92 eV.  相似文献   

15.
Hydroxyapatite (HA) films have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered films are usually amorphous which can cause some serious adhesion problems when post-deposition heat treatment is necessitated. In this paper we present an opposing radio frequency (RF) magnetron sputtering approach for the preparation of HA thin films on various substrates at low power levels. Using this alternative RF magnetron geometry, as-sputtered HA films are nearly stoichiometric, highly crystalline, and strongly bound to the substrate. Post-deposition heat treatment under 800 °C did not result in a marked improvement in the degree of crystallinity of the films. In addition, dissolution experiments show that as-sputtered films are more stable than annealed ones. As-sputtered films grown on amorphous silica substrates exhibit X-ray diffraction (XRD) patterns similar to those of randomly orientated HA powder. On the other hand, films deposited on oriented substrates such as Si(100) and Si(111) show a polycrystalline HA XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. The results suggest that the opposing RF magnetron sputtering approach has some potential to produce high quality HA films on metallic implants.  相似文献   

16.
Pt-PtOx thin films were prepared on Si(100) substrates at temperatures from 30 to 700°C by reactive r.f. magnetron sputtering with platinum target. Deposition atmosphere was varied with O2/Ar flow ratio. The deposited films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Resistively of the deposited films was measured by d.c. four probe method. The films mainly consisted of amorphous PtO and Pt3O4 (or Pt2O3) below 400°C, and amorphous Pt was increased in the film as a deposition temperature increased to 600°C. When deposition temperature was thoroughly increased, (111) oriented pure Pt films were formed at 700°C. Compounds included in the films strongly depended on substrate temperature rather than O2/Ar flow ratio. Electrical resistivity of Pt-PtOx films was measured to be from the order of 10−1 Ω cm to 10−5 Ω cm, which was related to the amount of Pt phase included in the deposited films.  相似文献   

17.
ZnO掺杂Li+陶瓷靶及溅射膜制备工艺研究   总被引:2,自引:0,他引:2  
利用固相反应成功地制备了直径为70mm,厚度为10~15mm的掺杂Li离子ZnO陶瓷靶材.研究了不同摩尔浓度的Li离子掺杂靶材,并对其绝缘电阻与损耗进行了分析比较,最终确定Li离子的最佳掺杂量为2.2l%(摩尔分数).同时通过在不同温度烧结试验、不同成型压力试验确定了ZnO靶材制备的最佳工艺,并通过所制备的ZnO-Li0.022陶瓷靶,采用RF射频磁控溅射技术在Si(100)、玻璃(载玻片)、及Pt(111)/Ti/SiO2/Si(100)基片上制备出高度c轴(002)择优取向、均匀、致密的ZnO薄膜.  相似文献   

18.
ZnO thin films with thickness d = 100 nm were deposited by radio frequency magnetron sputtering onto glass substrate from different targets. The structural analyses of the films indicate they are polycrystalline and have a wurtzite (hexagonal) structure. Crystallites are preferentially oriented with (002) plane parallel to the substrate surface and the samples have low values for surface roughness, between 1.7 nm and 2.7 nm. The mechanism of electrical conduction in the studied films is strongly influenced by this polycrystalline structure and we used Van der Pauw method to analyze these properties. Electrical studies indicate that the ZnO thin films are n-type. For the cooling process, thermal activation energy of electrical conduction of the samples can vary from 1.22 eV to 1.07 eV (for the ZnO layer obtained from for metallic Zn target) and from 0.90 eV to 0.63 eV (for the ZnO layer obtained from ZnO target), respectively. The influence of deposition arrangement and oxidation conditions on the structural and electrical properties of the ZnO films was investigated in detail.  相似文献   

19.
Niobium oxide (NbOx) films were deposited by pulsed dc magnetron sputtering at different total gas pressures and oxygen flow rates. Various film properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, variable angle spectroscopic ellipsometry and four point probe. It was found that oxygen flow rates required for preparing NbO, NbO2 and Nb2O5 at a constant total pressure of 0.93 Pa were approximately 2, 4 and > 6 sccm, respectively. The results showed that the film properties, specifically composition can be significantly changed by the total gas pressure and the oxygen flow rate.  相似文献   

20.
In this work we present recent results on ZnO thin films grown by dc magnetron sputtering technique at room temperature (RT), focusing on structural and surface characterization using conventional cross-section transmission electron microscopy (XTEM) and high resolution cross section transmission electron microscopy (HRXTEM) in an attempt to understand the thickness influence on film, mechanical and optical properties as well as photoreduction/oxidation conductivity changes. Films were found to be polycrystalline with a columnar mode of growth. For films with thickness over 100 nm, XTEM and HRTEM analysis evidenced the presence of a small grains transition layer near interface with the substrate, feature which plays an important role in ZnO thin films for gas sensing application. The control of such structural parameters is proved to be critical for the improvement of their gas sensing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号