首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deposition effects of WC particle size on cold sprayed WC-Co coatings   总被引:2,自引:0,他引:2  
The WC particle size and its influence on the deposition of Co-based cermets are examined. Micron and nanostructured powders with similar Co content were employed. Varying the WC particle size influenced significantly the deposition efficiency of the coating process. Micrometer-structured WC-Co feedstocks did not permit coating build up when processed under comparable or elevated thermal spray parameters used for the nanostructured WC-Co feedstocks. In addition, micrometer-structured WC-Co coatings exhibited a conjoint erosion and deposition effect on the surface. Fine WC particles (< 1 μm) were observed near the substrate interface and larger WC particles (1-2 μm) in the vicinity of the coating surface. These observations indicate the existence of a critical WC particle size for deposition by the cold spray method and that the size criteria arises due to the formation and cohesion mechanisms within the coating layer.Nanostructured test specimens displayed (i) a dense microstructure with little presence of porosity, (ii) a crack free interface between the coating and substrate that indicated good adhesion, and (iii) no observable phase changes. The XRD patterns of each powder and their respective coatings did not have observable peak differences but the diffraction peak broadening of coatings indicated that there was grain refinement during the coating process. Furthermore, all nanostructured as-sprayed WC-Co coatings exhibited Vickers hardness values above HV1000. The nanostructured WC-Co coatings demonstrated adhesive strengths that exceeded the limits of the glue (60 MPa).  相似文献   

2.
Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power laser beam. As a result the microstructure characterized by hard ceramic particles distributed in a metal matrix with the strong bonding to substrate is formed in the surface layer of the treated metal.Dry sliding wear properties of these metal matrix composites layers were measured and compared with the wear properties of the substrate and with surfaces simply remelted by the laser beam. The observed wear mechanisms are summarized and related to detailed microstructural observations. The layers have been found to show excellent interfacial bonding, coupled with substantially improved tribological properties expressed through the wear resistance increase of 8 times. The amount of WC particles was sufficient to reinforce the matrix and the particles have shown a good bonding to the matrix to support the contact stress in the layer.  相似文献   

3.
Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.  相似文献   

4.
To increase the adhesion of diamond films and avoid the negative effects of using cobalt, previous treatments have employed tungsten particles to cover the surface of the 6 wt.% cobalt-cemented tungsten carbide (WC-Co) substrate. The surface of the tungsten particles is transformed into W2C and WC, which attracts and traps carbon. Through the process of nucleation, the carbon forms around the tungsten particles, thereby satisfying the conditions necessary for the formation of diamond film. Using Raman spectroscopy, we determined that diamond films of good quality with excellent adhesive properties and a hardness level as high as 27.78 GPa could be produced following pretreatment with 2.0 μm tungsten particles. Rockwell indentation tests indicate that addition of tungsten particles promotes the interfacial adhesion of diamond films with WC-Co substrates. We determined that using smaller tungsten particles decreased the number of gaps and cavities on the surface of the substrate, thereby enhancing the adhesion of the diamond film.  相似文献   

5.
Particles of homogeneous elementary composition are formed by spark erosion of a WC–Co hard alloy in a special assembly. The average particle diameter is 4.0 μm, and the specific surface area is 3.33 m2/g. The powder was carbonized for 4 h in CO gas. The particles produced by carbonization consist of a WC frame, with cobalt situated in WC interlayers. The thickness of WC layers in most of the particles ranges from 10 to 200 nm. The microhardness of these particles (HV = 23.7 ± 4.2 GPa) exceeds the microhardness of the initial standard hard alloy (HV = 15.47 ± 1.71 GPa).  相似文献   

6.
Ceramic coating was prepared on Q235 carbon steel by plasma electrolytic oxidation (PEO). The microstructure of the coating including phase composition, surface and cross-section morphology were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy (SEM). The corrosion behavior of the coating was evaluated in 3.5% NaCl solution through electrochemical impedance spectra (EIS), potentiodynamic polarization and open-circuit potential (OCP) techniques. The bonding strength between Q235 carbon steel substrate and the ceramic coating was also tested. The results indicated that PEO coating is a composite coating composed of FeAl2O4 and Fe3O4. The coating surface is porous and the thickness is about 100 μm. The bonding strength of the coating is about 19 MPa. The corrosion tests showed that the corrosion resistance of Q235 carbon steel could be greatly improved with FeAl2O4-Fe3O4 composite coating on its surface.  相似文献   

7.
激光参数对Ni基熔覆层结构及耐磨性的影响   总被引:6,自引:1,他引:6       下载免费PDF全文
吴萍  姜恩永  赵慈  周昌炽  唐西南 《焊接学报》2003,24(2):44-46,50
采用热喷涂预置和激光熔覆方法在Q235钢基体上熔覆Ni基合金涂层和Ni/WC复合涂层,研究激光功率对涂层微观结构的影响。结果表明,选择合适的激光输出功率,可获得组织分布均匀、低稀释率、与基体结合良好的合金涂层;在Ni/WC复合涂层中,合理的激光功率使WC颗粒部分熔化,并在颗粒周围重新凝固并析出针状碳化物,这既有利于提高涂层的硬度又能使未熔化的WC颗粒与涂层内合金溶剂牢固结合。激光功率较大时涂层内WC颗粒烧损并沉底,沉积在涂层底部的WC颗粒,使基体到涂层的性能发生突变,这样既容易引发裂纹及疲劳破坏,又不利于涂层表面的耐磨。  相似文献   

8.
铁基合金+WC激光熔覆层的显微组织与性能   总被引:3,自引:0,他引:3  
在Q235钢和QT-600球铁表面激光熔覆铁基合金+WC粉末.利用扫描电镜(SEM)、光学显微镜(OM)、能谱仪(EDS)和X射线衍射仪(XRD)分析了熔覆层的微观组织,测试了熔覆层硬度和磨损性能.结果表明,Q235钢表面熔覆层组织较细,熔覆层与基体结合界面波形不明显,且出现白亮层.QT-600球铁表面熔覆层组织粗大,界面波形较大,基体混入多,无白亮层,硬度、耐磨性相对较低.分析认为,组织与性能的不同是由于Q235钢熔点较高,熔化量少,且熔池冷速快,组织细化.QT-600球铁表面熔覆层组织不均匀,其中等轴品的耐磨性高于柱状晶,原因在于较细的等轴晶晶界较多,增大了滑动阻力.  相似文献   

9.
Exaggerated tungsten carbide grain growth is common at the interface between the diamond table and the cobalt-cemented tungsten carbide (WC-Co) substrate in polycrystalline diamond cutters (PDC). The exaggerated WC grains at the interface can grow as large as 50 μm with an aspect ratio of 50:1. These large grains can also grow as clusters. The presence of large WC grains/clusters creates weakness at the diamond-substrate interface and impairs the strength of the PDC tool. In the present investigation, we tried to understand the root cause of exaggerated WC grain growth at the interface. Our findings show that WC grain growth at the interface decreases with a decrease in the carbon/tungsten (C/W) ratio. By adding 5 wt.% pure tungsten powder to the diamond, the C/W ratio decreased and we found no WC grain growth. By adding fully stoichiometric WC, which has 6.13 wt.% carbon, grain growth was reduced but still observed. Sintering on a substrate having η-phase (carbon deficient phase) also decreased the C/W ratio, and we did not observe WC grain growth.  相似文献   

10.
采用等离子弧粉末堆焊技术在Q235钢表面分别堆焊高铬铸铁和WC增强型高铬铸铁,通过对各堆焊层的显微组织、化学成分、显微硬度、耐磨性和耐蚀性进行对比分析,揭示WC颗粒对高铬铸铁堆焊层的影响。结果表明,高铬铸铁堆焊层显微组织由初生(Fe,Cr)7C3和共晶组织组成,WC增强型高铬铸铁堆焊层由初生碳化物、WC颗粒和共晶组织组成。与高铬铸铁相比,WC增强型高铬铸铁由于WC的加入,初生碳化物面积分数非常高,共晶组织数量相应减少;WC增强型高铬铸铁的硬度,耐电解腐蚀性和耐热腐蚀性均优于高铬铸铁。两种堆焊层熔合线处的硬度陡降,结合线扫描结果说明,WC的加入不影响WC增强型高铬铸铁堆焊层与基体界面处的冶金结合和堆焊质量。  相似文献   

11.
The ability to quantify surface mechanical properties is valuable for assessing the quality of thermal spray coatings. This is especially important for prostheses where loading is placed directly on the surface. Hydroxyapatite was classified to small (20-40 μm), medium (40-60 μm) and large (60-80 μm) particle sizes and thermal sprayed to produce a coating from spread solidified hydroxyapatite droplets. It was revealed for the first time, that nanoindentation can be successfully used to determine the hardness and elastic modulus on the surface of well spread solidified droplets at the hydroxyapatite coating surface. Comparison with indentation results from polished cross-section exhibited comparable values and statistical variations. The hardness was 5.8 ± 0.6, 5.4 ± 0.5 and 5.0 ± 0.6 GPa on coatings produced from small, medium and large sized powder. Similarly, the elastic modulus decreased from 121 ± 7, 118 ± 7 to 114 ± 7 GPa, respectively. Use of several indentation loads gave comparable results with sintered hydroxyapatite suggesting good inter-splat bonding within the coating. MicroRaman spectroscopy and X-ray diffraction confirmed a larger degree of dehydroxylation for the smaller particles also revealing a lower elastic modulus. This shows the influence of particle size and possibly dehydroxylation of hydroxyapatite on the mechanical properties of the coating surface.  相似文献   

12.
Q235钢表面激光熔注WC涂层的微观组织及耐磨性   总被引:4,自引:2,他引:2  
采用激光熔注技术对材料进行表面强化具有显著的优点.将WC陶瓷作为注入颗粒,在Q235钢表面制备激光熔注层.对激光熔注工艺进行了系统研究.利用SEM,EDS,XRD等手段分析熔注层的微观组织结构,对熔注层的硬度和耐磨性能进行了测试.结果表明,成功的激光熔注过程需要严格的工艺参数条件,采用优化的工艺参数时激光熔注WC表面层成形良好.熔注层主要由WC,W2C以及M6C(Fe3W3C-Fe4W2C)强化相组成,Fe3W3C分别以颗粒之间基体上的树枝晶和依附WC颗粒形成的反应层两种形态存在于熔注层中;熔注层平均硬度约为母材硬度的4倍,熔注层摩擦系数不超过基体的1/4,熔注层耐磨性良好.  相似文献   

13.
Influence of nitriding time on the microstructure and microhardness of AISI 321 austenite stainless steel was investigated, using a complex salt bath heat-treatment at low temperature, 430 °C. Experimental results revealed that after salt bath nitriding, a modified layer was formed on the surface of substrate with the thickness ranging from 2 μm to 30 μm with changing treating time. The nitrided layer depth thickened extensively with increasing nitriding time. The growth of the nitrided layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. Scanning electron microscopy and X-ray diffraction showed that in 321 stainless steel subjected to complex salt bathing nitrided at such temperature for less than 8 hours, the main phase of the nitrided layer was expanded austenite (S phase) by large. When the treatment time is prolonged up to 8 hours and more, S phase is formed and subsequently transforms partially into CrN, and then the secondary CrN phase precipitated. With treating time prolonged, more CrN precipitates formed along the grain boundaries in the outer part. In the inside part between the some CrN and the substrate, there is still a broad single S phase layer. All treatments can effectively improve the surface hardness.  相似文献   

14.
采用等离子熔覆技术,以铸造碳化钨、钨铁粉、镍包石墨和铁基合金粉为原材料,在Q235钢基体上制备了外加和内生联合WC颗粒增强铁基复合涂层,通过扫描电镜和能谱分析、X射线衍射、硬度测试和磨料磨损试验对其微观组织、物相组成、硬度和耐磨性能进行了表征。结果表明,在优化的工艺参数下,可以获得与基体冶金结合良好的涂层,硬质相除外加的WC颗粒,还有内生的WC、W2C、W3C、Fe3W3C和Fe2W2C等;随着混合粉末中除外加WC之外的W含量增加,熔池中合金液密度增大,可以减弱外加WC颗粒下沉;当W含量达到15%时,外加WC颗粒均匀分布在涂层中,没有团聚现象发生,且在外加WC颗粒周围有细小的原位WC颗粒生成,涂层的显微硬度和耐磨损性能显著提高,涂层的平均硬度约为1300 HV0.2,耐磨性为Q235钢基体的10倍。  相似文献   

15.
微米WC增强Ni60合金高频感应熔覆涂层耐磨性能   总被引:3,自引:0,他引:3       下载免费PDF全文
采用高频感应熔覆方法在Q235低碳钢基体上制备了不同含量的微米WC增强Ni60A合金复合涂层.用MLS-225型湿砂橡胶轮磨粒磨损试验机评价了涂层的耐磨性能,利用SEM,XRD观察并分析了涂层的显微组织和磨损表面形貌.结果表明,在相同试验条件下,涂层的硬度和耐磨性随WC含量的增加而提高,当WC含量少于30%时,WC分布不均匀,主要集中于涂层的中部,涂层中Cr7C3相以粗大的六方状和长条状存在,不利于涂层耐磨性的提高;当WC含量达到50%时,Ni基合金中加入WC的含量达到了合适比例,耐磨性最佳,相对耐磨性为Ni60A涂层的6.5倍;当WC含量达到60%时,涂层的硬度最高,但出现了较多的孔洞,大量未熔的WC颗粒在磨粒的反复作用下剥落形成了大的剥落坑,导致耐磨性下降.涂层与基体实现了冶金结合,涂层的磨损机制主要为轻微的塑性切削和硬质相的脆性剥落.  相似文献   

16.
利用等离子熔覆同轴双筒送粉工艺,在Q235基板上制备了多层WC-Ni成分渐变的梯度涂层,结果表明:涂层中WC颗粒大部分被溶解,在随后的快速冷却中,有两类碳化物组织析出,组织特征与WC-Ni的含量有关。当WC-Ni含量小于20%时,析出粗大树枝晶基体混合片层状共晶碳化物组织;当WC-Ni含量大于30%时,析出块状初生碳化物组织。未完全溶解的WC颗粒呈圆角形,并与基体之间形成合金过渡层。梯度涂层中各层间形成了冶金过渡,其主要物相有γ-Fe、WC、Fe3C、Fe3W3C、Cr7C3。涂层的硬度明显高于基体,但受WC的溶解及析出碳化物的大小及分布不均影响,梯度涂层的硬度分布波动起伏较大。  相似文献   

17.
通过配制不同硅含量的WC颗粒增强涂层,借助光学显微镜、扫描电镜、X射线衍射仪和磨粒磨损试验机等,对比研究硅对氩弧熔敷原位制备WC颗粒增强涂层组织及性能的影响. 结果表明,当硅含量为0~5%,硅能促进WC形核与长大,抑制Fe3W3C等M6C碳化物的形成. 其中当硅含量为5%时,涂层中WC分布均匀,涂层性能达到最佳,其相对耐磨性达到最高值. 当硅含量继续增加到7.5%以上时,WC颗粒反而细化,且团聚现象明显,涂层耐磨性下降.  相似文献   

18.
The surface of poly(tetrafluoroethylene) (teflon, PTFE) was treated by saddle field fast atom beam (FAB) source in hydrogen, helium and nitrogen with about 1 kV accelerating voltage, up to an estimated particle fluence of 1017 cm− 2. The untreated and FAB-treated samples were characterised by XPS, Raman microspectroscopy, single pass topographic and multipass wear tests and water contact-angle measurements. According to XPS results, upon FAB-treatment the surface F/C value decreased drastically. Raman microspectroscopic measurements testified to the formation of a carbonised surface layer. The thickness of the graded, amorphous carbon-containing layer determined by in-depth Raman microspectroscopic analysis ranged between 5.5 ± 1 and 10.5 ± 1 μm. In addition to radiation damage, a decisive role of degradation induced by thermal effects and diffusion of reactive particles was suggested. The small scale wear resistance of the hydrogen and nitrogen FAB-treated samples improved in comparison with that of the untreated PTFE. The mean surface roughness increased for the treated samples in the order of N < He < H. Water contact-angle decreased upon FAB-treatment. The effect of increased wettability remained durable for at least three months.  相似文献   

19.
Using tungsten wires as a reactive source, an iron-based composite coating, reinforced by tungsten carbide (WC) particles, with a thickness of 3.0 mm, was fabricated on the surface of a gray cast iron substrate by centrifugal casting plus in-situ synthesis techniques. With the help of differential thermal analysis (DTA), an appropriate pouring temperature of the gray cast iron molten was determined to be 1300 °C. The experimental results show that the composite coating is dense and consists mainly of primary WC carbides, fine secondly WC carbides as the reinforcing phases and pearlite accompanied by negligible graphite flakes as the matrix. Wear resistance of the composite coating was determined with a pin-on-disc wear test technique, indicating that the composite coating, containing high volume fraction of hard WC carbides, present good wear resistance property compared with the un-reinforced gray cast iron, regardless of load level. Additionally, according to the Fe-W-C ternary phase, reaction paths between tungsten wires and molten, and in-situ synthesis of WC particles, were investigated.  相似文献   

20.
Nitriding was carried out in low pressure plasma excited by single- or dual-frequency discharge modes, at a substrate temperature of 523 K, followed by the deposition of 3 μm thick TiCN or TiN/TiCN coatings at a PH15-5 substrate temperature of 723 K. The nitrided layer was comprised of two distinct sublayers, namely a compound layer and a diffusion layer, with a total thickness of ∼ 60 μm. The compound layer was γ′-Fe4N and the diffusion layer was a solid solution of nitrogen in iron. The thickness of the compound layer fabricated by a single mode plasma is ∼ 5 μm, while that fabricated by dual-frequency mode plasma is ∼ 35 μm.It was found, using a ball-on-disk test, that the plasma nitrided layer fabricated by dual-frequency mode improved wear resistance by nearly one order of magnitude and improved the erosion resistance by a factor of two, compared with untreated steel. This improvement was common to the two nitriding treatments and both types of hard coatings. In particular, a thicker compound layer did not impair the wear resistance or the erosion resistance of the duplex treatment. The erosion resistance shows a linear dependence on the hardness of the uppermost nitrided or deposited layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号