首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Catalytically active, low-cost, and reusable transition metal catalysts are desired to develop on-demand hydrogen generation system for practical onboard applications. Electrolessly deposited Pd-activated TiO2-supported Co-Ni-P ternary alloy catalyst (Co-Ni-P/Pd-TiO2) is employed as catalyst in the hydrolysis of alkaline sodium borohydride solution. The catalyst is found to be isolable, redispersible, and reusable in the hydrolysis of alkaline NaBH4. The reported work also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 57.0 kJ/mol) and effects of the amount of catalyst, amount of substrate, and temperature on the rate for the catalytic hydrolysis of NaBH4. Maximum H2 generation rate of ∼460 mL H2 min−1 (g catalyst)−1 and ∼3780 mL H2 min−1 (g catalyst)−1 was measured by the hydrolysis of NaBH4 at 25 °C and 55 °C, respectively.  相似文献   

2.
PtAu-alloy nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully prepared by simultaneous reduction of H2PtCl6·6H2O and HAuCl4·3H2O with sodium borohydride as a reducing reagent and sodium citrate as a stabilizing reagent. The morphology and composition of the composite catalyst were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results show that the PtAu alloy nanoparticles with an average diameter of about 3.5 nm and narrow size distribution are supported on MWCNTs. Electrocatalytic oxidation of formic acid at the PtAu/MWCNTs nanocomposite electrode was investigated in a solution containing 0.50 M H2SO4 as a supporting electrolyte and 0.50 M formic acid by cyclic voltammogram and chronoamperometry. The results demonstrate that the PtAu/MWCNTs catalyst exhibits higher activity and stability for electro-oxidation of formic acid than the commercial Pt/C catalyst, reflecting by its lower onset potential (−0.05 V), oxidation mainly occurring in low potential range of −0.05 ± 0.65 V and higher peak current density of 3.12 mA cm−2. The result of CO stripping voltammetry discloses that gold in the PtAu/MWCNTs nanocomposite enhances the catalytic activity and stability.  相似文献   

3.
By slow strain rate technique, hydrogen embrittlement (HE) of a 2205 duplex stainless steel was studied in deaerated acidic (pH 6.5) artificial sea water, in the absence and in presence of sulphide ions (1-30 ppm). Strain rate tests (1 × 10−6 s−1) were performed on specimens polarized at −0.9; −1.0 and −1.2 VSCE at 25 ± 0.1 °C. HE was evaluated by R, the ratio between the % elongation to fracture in the aggressive solution and in air.Duplex stainless steel were subjected to HE in acidic artificial sea water at −0.9 VSCE. HE increased at −1.0 VSCE but it was reduced at −1.2 VSCE. This decrease was attributed to the influence of a calcareous deposit.Sulphide ions at 1 ppm were sufficient to stimulate HE of duplex stainless steel. The higher the sulphide amount and the more negative the cathodic potential, the higher HE was. In the presence of S2−, the shielding effect of the calcareous deposit was not evident.  相似文献   

4.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

5.
The heats of drop-solution in 3Na2O + 4MoO3 melt at 973 K and 1073 K for calcium and strontium carbonates, Bi2O3, Nb2O5 and several stoichiometric mixed oxides in CaO-Nb2O5, SrO-Nb2O5 and Bi2O3-Nb2O5 systems were measured using a Setaram Multi HTC-96 calorimeter. The values of enthalpy of formation from constituent binary oxides at 298 K, ΔoxH, were derived for the mixed oxides under investigation: ΔoxH(CaNb2O6) = −132.0 ± 23.8 kJ mol−1, ΔoxH(Ca2Nb2O7) = −208.0 ± 31.9 kJ mol−1, ΔoxH(SrNb2O6) = −167.9 ± 19.1 kJ mol−1, ΔoxH(Sr2Nb2O7) = −289.2 ± 37.5 kJ mol−1 and ΔoxH(BiNbO4) = −41.9 ± 11.1 kJ mol−1. Additionally, the values ΔoxH for other mixed oxides with different stoichiometries were estimated on the basis of these experimental results.  相似文献   

6.
A 1H NMR study was carried out using hydrogenated activated carbon powder (AC) prepared by mechanical milling in a H2 atmosphere. Chemical shifts in the hydrogenated milled AC were observed near 0 and 2 ppm. In addition, the peak near 0 ppm was separated into two peaks (α and β) by the deconvolution of the NMR spectra; −0.6 and 0.2 ppm. This indicates that hydrogenated milled AC has three hydrogen components with different molecular mobilities. Measurement of the spin-lattice relaxation time (T1) revealed that the hydrogen near 0 and 2 ppm consisted of two components (Components 1 and 2) and one component (Component 3), respectively. However, the activation energies (Ea) of each hydrogen component could not be estimated because the plots of inverse temperature (1/T) versus the logarithm of T1 (ln T1) were scattered. We assumed that the components near 0 ppm (Component 1 and/or 2) were thermally unstable because the intensity of the chemical shift near 0 ppm decreased as the measurement temperature increased, and this might have an effect on T1 measurements. The spin-spin relaxation time (T2) indicated high and low molecular mobility at each chemical shift and several temperatures.  相似文献   

7.
The stability and compressibility of Langmuir films of dococyltriethylammonium bromide (C22TAB) and 1-octadecanol (C18OH) and their mixtures on water surfaces were first investigated. Langmuir-Blodgett films were transferred onto iron substrate. Their effect on corrosion of iron in carbon dioxide containing brine were investigated by electrochemical methods. The C18OH formed a thin homogenous film with molecular area 19.4 Å2 at 36 mN m−1 at water surface. The films of C22TAB and C22TAB/C18OH mixtures were less dense, with 31 Å2 molecular area at 36 mN m−1 at water surface. The corrosion rate of iron substrate was reduced by 95% by deposition film of C18OH, while the corrosion rate of iron was reduced by 60% for films of C22TAB and C22TAB/C18OH mixtures.  相似文献   

8.
The high temperature sulphidation behaviour of Fe-46Cr-xSn (x = 0; 0.2; 0.5; 1; 2) alloys has been studied at temperatures of 1073, 1173 and 1273 K in H2/H2S mixtures with different sulphur vapour partial pressures of 10−1, 10−3 and 10−5 Pa. Thermogravimetric studies in combination with scanning electron microscope (SEM), with energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) techniques, have displayed a significant influence of the sulphur partial pressure on the composition and growth rate of the sulphide scale. The results have shown that addition of tin increases the sulphidation rate of Fe-46Cr alloys but not considerably (except at temperatures of 1073 and 1173 K combined with sulphur partial pressure of 10−5 Pa). The metallic core of the studied samples was enriched in tin and iron, moreover tin was found in the internal layer close to the metallic core as metallic FexSny inclusions with tin concentrations of up to 12 at.%.  相似文献   

9.
In this work, we describe for the first time a high surface area nanocrystalline porous α-LiFeO2-C composite anode material synthesized by a simple molten salt method, followed by a carbon coating process. The synthesized nanocomposite presents an interconnected porous architecture, as was confirmed by field emission scanning electron microscope observations. Transmission electron microscope investigations revealed that amorphous carbon was incorporated into the pores among the nanoparticles and that some nanoparticles were covered by a thin layer of amorphous carbon as well. Electrochemical measurements showed that the carbon played an important role, as it affected both the cycle life and the rate capability of the electrode. The α-LiFeO2-C nanocomposite electrode delivered a higher reversible capacity and good cycle stability (540 mAh g−1 at 1 C after 200 cycles) compared to the pure α-LiFeO2 electrode. Good electrochemical performance of the α-LiFeO2-C nanocomposite electrode could be attributed to the porous conductive architecture among the nanoparticles, which not only has benefits in terms of decreasing the absolute volume changes and increasing the mobility of lithium ions, but also offers conductive pathways along the whole interconnected wall in the structure, which is favourable for the transport of electrons, promotes liquid electrolyte diffusion into the bulk material, and acts as a buffer zone to absorb the volume changes. Our results indicate that α-LiFeO2-C nanocomposite could be considered as a potential anode material for lithium-ion batteries.  相似文献   

10.
Hydrogen embrittlement is no doubt a limiting factor in the high performance applications of many intermetallics. This is mainly because of the inward diffusion of hydrogen atoms and formation of brittle hydride phases during hydrogen exposure of the intermetallic components that resulted in lowering the component's ductility and fracture toughness. γ-TiAl intermetallic is not an exception in this regard. The present study dealt with the method of providing oxide based glass-ceramic coatings on the surface of γ-TiAl by vitreous enameling technique to protect the substrate from the detrimental effect of hydrogen at high temperatures like 800 °C at 0.1 MPa gas pressure for up to 75 h. Results showed that although the uncoated γ-TiAl alloy was severely affected by the hydrogen exposure test, the coated samples were remained mostly unaffected after the test with minimum changes in their microstructure. While the gain in weight of the uncoated alloy after 75 h of H2 permeation test was ~ 1.05 mg/cm2, the weight gain of the two coated samples were only ~ 0.12 mg/cm2 for BaO-SiO2-MgO and ~ 0.15 mg/cm2 for MgO-SiO2-TiO2 glass-ceramic coated substrates. As revealed from the XRD phase analysis, after the high temperature exposure of the coated samples in flowing H2 for up to 75 h, the coated layers were only enriched with their major crystalline phases with little or no trace of the detrimental hydride phases, whereas, in the uncoated alloy, presence of aluminum hydride and titanium hydrides were observed.  相似文献   

11.
Iron(II) sulphides were precipitated by mixing FeCl2 · 4H2O (or FeSO4 · 7H2O) and Na2S aqueous solutions with various [Fe(II)]/[S(-II)] concentration ratios at [Fe(II)] = 0.1 mol L−1. They were analysed by micro-Raman spectroscopy and X-ray diffraction immediately after precipitation and after various times of ageing in suspension at room temperature. In any case, the initial precipitate was nanocrystalline mackinawite. Its Raman spectrum is made of two sharp peaks at 208 ± 1 and 282 ± 1 cm−1. For [Fe(II)]/[S(-II)] ? 1, ageing of the precipitate led to crystalline mackinawite, as testified by X-ray diffraction. The Raman spectrum of crystalline Fe(II) mackinawite shows three main peaks at 208, 256 and 298 cm−1. Drying of nanocrystalline mackinawite under an argon flow favoured crystallisation. The removal of interparticle and surface adsorbed water molecules led to coalescence of the nanoparticles and increase of the size of the domains of coherent scattering. For [Fe(II)]/[S(-II)] = 1/2, the precipitate still consisted of nanocrystalline mackinawite after 70 days of ageing. Finally, the early oxidation stages of mackinawite led to the formation of Fe(III) cations inside the tetrahedral sites of the crystal structure. The most oxidised form of Fe(III)-containing mackinawite is characterised by a Raman spectrum with sharp peaks at 125, 175, 256, 312 and 322 cm−1, and a large vibration band at 350-355 cm−1 that may be attributed to stretching modes of Fe(III)-S tetrahedrons. Analyses of the rust layers of a roman ingot that remained 20 centuries in the Mediterranean Sea revealed the presence of iron sulphides, more likely generated by sulphate-reducing bacteria. Micro-Raman analyses demonstrated the presence of nanocrystalline mackinawite and Fe(III)-containing mackinawite.  相似文献   

12.
The influence of salt deposits on the atmospheric corrosion of high purity Al (99.999%) was studied in the laboratory. Four chloride and sulfate-containing salts, NaCl, Na2SO4, AlCl3 · 6H2O and MgCl2 · 6H2O were investigated. The samples were exposed to purified humid air with careful control of the relative humidity (95%), temperature (22.0 °C), and air flow. The concentration of CO2 was 350 ppm or <1 ppm and the exposure time was four weeks. Under the experimental conditions all four salts formed aqueous solutions on the metal surface. Mass gain and metal loss results are reported. The corroded surfaces were studied by ESEM, OM, AES and FEG/SEM equipped with EDX. The corrosion products were analyzed by gravimetry, IC and grazing incidence XRD. In the absence of CO2, the corrosivity of the chloride salts studied increases in the order MgCl2 · 6H2O < AlCl3 · 6H2O < NaCl. Sodium chloride is very corrosive in this environment because the sodium ion supports the development of high pH in the cathodic areas, resulting in alkaline dissolution of the alumina passive film and rapid general corrosion. The low corrosivity of MgCl2 · 6H2O is explained by the inability of Mg2+ to support high pH values in the cathodic areas. In the presence of carbon dioxide, the corrosion induced by the salts studied exhibit similar rates. Carbon dioxide strongly inhibits aluminum corrosion in the presence of AlCl3 · 6H2O and especially, NaCl, while it is slightly corrosive in the presence of MgCl2 · 6H2O. The corrosion effects of CO2 are explained in terms of its acidic properties and by the precipitation of carbonates. In the absence of CO2, Na2SO4 is less corrosive than NaCl. This is explained by the lower solubility of aluminum hydroxy sulfates in comparison to the chlorides. The average corrosion rate in the presence of CO2 is the same for both salts. The main difference is that sulfate is less efficient than chloride in causing pitting of aluminum in neutral or acidic media.  相似文献   

13.
The spinel compound Li4Ti5O12 was synthesized by a solid state method. In this synthesizing process, anatase TiO2 and Li2CO3 were used as reactants. The influences of reaction temperature and calcination time on the properties of products were studied. When calcination temperature was 750 °C and calcination temperature was 24 h, the products exhibited good electrochemical properties. Its discharge capacity reached 160 mAh g−1 and its capacity retention was 97% at the 50th cycle when the current rate was 1 C. When current rate increased to 10 C, its first discharge capacity could reach 136 mAh g−1, and its capacity retention was 85% at the 50th cycle.  相似文献   

14.
A novel magnetic nanocomposite of multiwalled carbon nanotubes (MWCNTs) decorated with Co1−xZnxFe2O4 nanocrystals was synthesized successfully by an effective solvothermal method. The as-prepared MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposite was used for the functionalization of P/H hydrogels as a prototype of device to show the potential application of the nanocomposites. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy and vibrating sample magnetometer. The results show that the saturation magnetization of the MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposites increases with x when the Zn2+ content is less than 0.5, but decreases rapidly when the Zn2+ content is more than 0.5. The saturation magnetization as a function of Zn2+ substitution reaches a maximum value of 57.5 emu g−1 for x = 0.5. The probable synthesis mechanism of these nanocomposites was described based on the experimental results.  相似文献   

15.
Hydrogen-selective membranes formed from body centred cubic alloys can exhibit very high hydrogen permeability, but are prone to brittle failure due to excessive hydrogen absorption. Until issues associated with this are overcome, these materials will not provide a viable alternative to Pd-based membranes. Multi-phase V-Ni-Ti alloys which contain a significant proportion of a BCC component show promise for this application. In order to examine this system in greater detail, alloys of the general form V85−xTixNi15, in which x was varied between 0 and 30 (at.%), were fabricated via arc melting and electrical-discharge wire cutting. Hydrogen permeation measurements of Pd-coated samples at 400 °C showed a monotonic increase in permeability with increasing Ti, reaching a maximum of 1.0 × 10−7 mol H2 m−1 s−1 Pa−0.5 for the V55Ti30Ni15 alloy at 400 °C. The driving force for hydrogen transport is provided by hydrogen absorption, which varies non-linearly with Ti content, and is dependent on the volume fraction of BCC phase, and levels of Ti and Ni solution in the BCC phase. Diffusion coefficients of atomic H through the bulk alloys alloys are dependent largely on microstructure. Whereas the V85Ni15 alloy forms a single phase microstructure, progressive substitution of V with Ti introduced several minor phases; a NiTi-type phase (formed when x ≥ 5), and a NiTi2-type phase (formed when x ≥ 10), both as V-containing solid solutions. These minor phases act as barriers to hydrogen diffusion, resulting in a significantly reduced diffusion coefficient compared to single-phase BCC alloys. Importantly, the mechanical stability of these alloys appears to be enhanced by the multi-phase microstructure. These alloys therefore show great promise for meeting future flux, cost and durability targets.  相似文献   

16.
Aqueous solutions with 3 mol L−1 (M) diethanolamine (DEA) concentration are extensively used in the gas processing industry to remove acid gases. However, the degradation of the DEA and the formation of heat-stable salts (HSS) lead to severe corrosion problems. Even worse, equipment corrosion can be magnified by the unavoidable presence of sulphide acid and dissolved oxygen as a result of hydrocarbon (natural gases and crude oil) processing. The aim of this work is to study the combined corrosion effects of DEA, sulphide acid and oxygen on carbon steel. Electrochemical methods revealed that in the 3 M DEA medium without oxygen, corrosion processes are modulated by adsorbed DEA film formation. Furthermore, it was shown that the addition of oxygen and 15 × 10−3 mol L−1 (15 mM) H2S produced the formation of an adherent film on the carbon steel surface. Chemical analyses by EDAX revealed a homogeneous film of corrosion products composed of iron oxide and sulphide formed in DEA solution containing O2 and H2S, respectively. Equivalent circuits were used to estimate the parameters associated with ion diffusion through the formed corrosion films. The results showed that the presence of H2S induced the formation of thin iron sulphide films that provide protective properties to the metal. It is concluded that the presence of oxygen in a sweetening plant should be avoided as DEA degradation can be produced with the subsequent decrease in chelating process efficiency and the increase in corrosion problems.  相似文献   

17.
A new solid high-proton conductor, heptadecatungstovanadodiphosphoric heteropoly acid H7P2W17VO62·28H2O with Dawson structure was synthesized by the stepwise acidification and the stepwise addition of element solutions. The optimal proportion of component compounds in the synthesis reaction was given. The product was characterized by chemical analysis, potentiometric titration, IR, UV, XRD, 31P NMR, TG-DTA and electrochemical impedance spectroscopy (EIS). The results indicate that H7P2W17VO62·28H2O possesses the Dawson structure. EIS measurements show a high conductivity (3.10 × 10−2 S cm−1 at 26 °C and 75% relative humidity), with an activation energy of 32.23 kJ mol−1 for proton conduction. The mechanism of proton conduction for this heteropoly acid is Vehicle mechanism.  相似文献   

18.
A molybdate(VI)-Al(III) chemical conversion process was developed as an alternative to the chromate processes. Steel and zinc-plated steel specimens were treated in the solutions of 0.16 mol l−1 ammonium alum (AlNH4(SO4)2 · 12H2O) with small amounts of ammonium molybdate(VI) (0.002-0.016 mol l−1 (NH4)6Mo7O24 · 4H2O) at 60 °C for 10-30 min in an ultrasonic rinsing apparatus. The formed films were composed of oxyhydroxides containing Mo(V,VI), Al(III), Fe(II,III), and sulfate ions (and Zn(II) ions in the case of zinc-plated steel), and showed good corrosion resistance in an aerated 0.5 mol l−1 NaCl-0.15 mol l−1 H3BO3 solution (pH=7). The films macerated during the corrosion test, but they did not detach and functioned as a protective layer. This process may be useful in forming undercoats for paints and polymer coatings on steel and zinc-plated steel.  相似文献   

19.
H.L. Du  P.K. Datta  X. Wu 《Corrosion Science》2007,49(5):2406-2420
High temperature corrosion behaviour of three TiAl-based intermetallic alloys - Ti-44Al-8Nb-1B, Ti-46Al-8Nb-1B and Ti-48Al-2Nb-2Cr-1B (at.%) - was studied in an environment of H2/H2S/H2O yielding pS2 ∼ 6.8 × 10−1 Pa and pO2 ∼ 1.2 × 10−15 Pa potentials at 850 °C. The kinetic results obtained by a discontinuous gravimetric method indicate that increase in Al and Nb concentrations led to enhanced high temperature corrosion resistance, the corrosion resistance decreasing in the order: Ti-46Al-8Nb-1B > Ti-44Al-8Nb-1B > Ti-48Al-2Nb-2Cr-1B. The scale development studies using SEM, TEM, EDX, WDS and XRD confirmed the formation of a multilayered scale on all materials. An outer layer consisting of TiO2 existed beneath which an Al2O3 layer was present. Then a layer of TiO2 formed again, below which an Al-enriched NbAl3 was observed. A TiS layer was found beneath the NbAl3 layer. The formation of TiS led to the development of a NbAl3 band between the multilayered scale and the substrate.  相似文献   

20.
Min Tian 《Corrosion Science》2008,50(9):2682-2690
The anodic dissolution of an Au electrode and associated thin-layer oxide film formation in aq. H2SO4 in the presence of Cl or Br ions at various concentrations provides a model process for metal corrosion. In the present work such processes were investigated using cyclic voltammetry and chronoamperometry, with complementary nanogravimetry measurements using the EQCN. The results clearly indicate that in 0.5 M H2SO4 electrolyte, containing 1 mM Br or Cl, Au dissolves over the potential range 1.0 - 1.45 V(RHE) through a 3e oxidation process involving Au complex-ion formation that can be followed in situ by means of UV spectroscopy. The linear relationship between mass changes and reciprocal square-root of sweep-rate and between anodic currents in cyclic voltammetry at ca. 1.20 V for Br (1.39 V for Cl) and square-root of sweep-rate/or electrode rotation rate indicated quantitatively that the dissolution process is diffusion-controlled. It was interesting to find that electrode rotation in the presence of Cl ions has little effect on the anodic formation of surface oxide, while, on the contrary, with Br ions present, currents for oxide film reduction are not observed at rotation rates > ca. 400 rpm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号