首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文介绍了一种新的低功耗射频接收机前端, 适用于3-5GHz的超宽带系统. 基于0.13µm CMOS工艺实现, 该直接转换式接收机由宽带噪声抵消结构的跨导输入级, 正交无源混频器和跨阻负载放大器组成. 测试结果显示该接收机在整个3.1-4.7GHz 频带范围内的输入反射系数小于-8.5dB, 转换增益27dB, 噪声系数4dB, 输入三阶交调点-11.5dBm, 输入二阶交调点33dBm. 工作在1.2V电源电压下, 整个接收机共消耗18mA电流, 其中包括10mA用于片上正交本振信号产生和缓冲电路.芯片面积为1.1mm×1.5mm.  相似文献   

2.
本文介绍了一个基于薄膜电路工艺设计、加工的X波段下变频器.首先对整体方案进行分析论证,然后运用安捷伦公司的ADS仿真设计软件,对射频及中频滤波器、朗格电桥、低噪声放大器和混频器等电路单元及变频器系统进行了仿真设计.最后经过加工测试验证,该变频器性能指标良好.其工作频率为9.35GHz - 9.85GHz,变频增益≥26dB,噪声系数≤2dB,P01dB压缩点功率≥10dBm,输入、输出驻波≤1.3,镜像抑制比≥50dB;本振输入为0±1dBm.整个电路腔体结构尺寸为70mm×20mm×10mm.  相似文献   

3.
采用0.5μm GaAs工艺设计并制造了一款单片集成驱动放大器的低变频损耗混频器.电路主要包括混频部分、巴伦和驱动放大器3个模块.混频器的射频(RF)、本振(LO)频率为4~7 GHz,中频(IF)带宽为DC~2.5 GHz,芯片变频损耗小于7 dB,本振到射频隔离度大于35 dB,本振到中频隔离度大于27 dB.1 dB压缩点输入功率大于11 dBm,输入三阶交调点大于20 dBm.该混频器单片集成一款驱动放大器,解决了无源混频器要求大本振功率的问题,变频功能由串联二极管环实现,巴伦采用螺旋式结构,在实现超低变频损耗和良好隔离度的同时,保持了较小的芯片面积.整体芯片面积为1.1 mm×1.2 mm.  相似文献   

4.
基于LTCC技术的C频段星载接收机混频器   总被引:1,自引:1,他引:0       下载免费PDF全文
利用低温共烧陶瓷(LowTemperature Co-fired Ceramic,简称LTCC)技术,设计制作了一种可应用于C频段星载接收机的双平衡混频器。该混频器将射频和本振巴伦等无源器件集成在多层LTCC基板内,实现了电路的小型化、高集成度和高可靠性。测试表明,当射频输入为5.925~6.425GHz、本振频率为2.225GHz、中频输出频率为3.7~4.2GHz时,混频器的变频损耗≤9.3dB,P1dB为5.7dBm,本振到射频和本振到中频的隔离度分别为39.44dB和35.58dB。混频器的尺寸为40×22×1.92mm3。  相似文献   

5.
曲韩宾  高思鑫  张晓朋  高博 《半导体技术》2019,44(6):421-425,432
设计了一种适用于1.0~2.0 GHz的高线性下变频混频器。电路设计采用了无源双平衡结构,片内集成宽带巴伦、限幅本振放大器、混频核和偏置电路。为了提高混频器的线性度,在对无源双平衡的结构进行分析的基础上,折中选择混频核的晶体管尺寸,并优化了本振放大器输出信号的幅值及上升时间。基于0.35μm BiCMOS工艺进行了设计仿真,芯片面积为0.9 mm×1.8 mm。流片测试结果表明:射频频率1.0~2.0 GHz,对应本振频率1.0~2.0 GHz,最佳本振输入功率为0 dBm,转换增益大于-7.0 dB,射频输入三阶交调大于25 dBm,混频器工作电压为3.3 V,功耗为112 mW。该高线性无源双平衡混频器可满足工程应用。  相似文献   

6.
基于RC-CR多相网络技术研制了一款S波段镜频抑制接收机单片微波集成电路(MMIC),在MMIC芯片上集成S波段低噪声放大器(LNA)、差分IQ混频器、本振(LO)驱动放大器、RC-CR多相网络滤波器等电路单元,实现了S波段单片镜频抑制接收机,解决了镜频接收机小型化的问题.电路、电磁场软件仿真以及采用GaAs赝配高电子迁移率晶体管(PHEMT)工艺流片后的结果表明,在S波段实现了噪声系数小于1.8 dB,增益大于12 dB,中频(150±5) MHz带内镜频抑制大于35 dBc的技术指标.MMIC的芯片尺寸为4.8 mn×2.5 mm×0.07 mm.此镜频抑制接收机MMIC具有指标优异、体积小、集成度高的特点,可广泛用于各种需小型化的相控阵雷达和通信系统中.  相似文献   

7.
《无线电通信技术》2019,(6):638-642
设计一款工作在W波段的辐射计SOC芯片。该芯片采用商用0.1μm栅长的GaAs pHEMT工艺;内部集成低噪声放大器,IQ输出的零中频电阻混频器以及6倍频本振链。测试结果显示,该芯片工作频率为85~110 GHz,中频带宽大于10 GHz,本振需求低于16 GHz&6 dBm;工作频带内整个接收机电路的变频增益大于7 dB,特别在98~105 GHz频带内平坦度优于±0.5 dB。此外,该芯片实现了优于35 dBc的镜频抑制,极大降低了接收电路前级滤波器的需求。  相似文献   

8.
作为低频段混频电路中的典型拓扑结构,基尔伯特单元在毫米波、太赫兹领域的应用较少,在Ⅲ-Ⅴ族化合物半导体单片微波集成电路(MMIC)设计中,超过100 GHz的基尔伯特混频器很少有文献报导。基于70 nm GaAs mHEMT工艺,设计了一款120 GHz的双平衡式基尔伯特混频器,同时对该混频器版图结构进行优化改进,提升了混频器中频差分输出端口间的平衡度。仿真结果显示该混频器在本振输入0 dBm功率时,在100~135 GHz频率范围内有(-7.6±1.5) dB的变频损耗,射频输入1 dB压缩点为0 dBm@120 GHz,中频输出带宽大于10 GHz,差分输出信号间的功率失配<1 dB,相位失配<4°。该芯片直流功耗为90 mW,面积为1.5 mm×1.5 mm。  相似文献   

9.
马何平  徐化  陈备  石寅 《半导体学报》2015,36(8):085002-7
本文描述了一种工作在2.4GHz ISM频段的低功耗、低中频射频接收机前端电路,使用TSMC 0.13um CMOS工艺。整个前端包括一个低噪声放大器以及两次变频下变换混频器。低噪声放大器通过在输入级引入额外的栅-源电容实现了低功耗与低噪声的设计;在下变换混频器设计中,分别使用一个单平衡射频混频器以及两个双平衡低中频混频器实现两次变频下变换技术;射频混频器输入晶体管源极串联电感-电容谐振网络以及低噪声放大器输出级的电感-电容谐振网络总共实现了30dB的镜像抑制率。整个前端占用芯片面积约0.42mm2,在1.2V的供电电压下,仅耗功率4.5mW,实现了4dB的噪声系数,在高增益模式下,获得-22dBm的三阶交调线性度,整个链路电压增益为37dB。  相似文献   

10.
采用中国电子科技集团公司第十三研究所的GaAs PHEMT低噪声工艺,设计了一款2~4 GHz微波单片集成电路低噪声放大器(MMIC LNA)。该低噪声放大器采用两级级联的电路结构,第一级折中考虑了低噪声放大器的最佳噪声和最大增益,采用源极串联负反馈和输入匹配电路,实现噪声匹配和输入匹配。第二级采用串联、并联负反馈,提高电路的增益平坦度和稳定性。每一级采用自偏电路设计,实现单电源供电。MMIC芯片测试结果为:工作频率为2~4 GHz,噪声系数小于1.0 dB,增益大于27.5 dB,1 dB压缩点输出功率大于18 dBm,输入、输出回波损耗小于-10 dB,芯片面积为2.2 mm×1.2 mm。  相似文献   

11.
A monolithic microwave integrated circuit (MMIC) chip set consisting of a power amplifier, a driver amplifier, and a frequency doubler has been developed for automotive radar systems at 77 GHz. The chip set was fabricated using a 0.15 µm gate‐length InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor (mHEMT) process based on a 4‐inch substrate. The power amplifier demonstrated a measured small signal gain of over 20 dB from 76 to 77 GHz with 15.5 dBm output power. The chip size is 2 mm × 2 mm. The driver amplifier exhibited a gain of 23 dB over a 76 to 77 GHz band with an output power of 13 dBm. The chip size is 2.1 mm × 2 mm. The frequency doubler achieved an output power of –6 dBm at 76.5 GHz with a conversion gain of ?16 dB for an input power of 10 dBm and a 38.25 GHz input frequency. The chip size is 1.2 mm × 1.2 mm. This MMIC chip set is suitable for the 77 GHz automotive radar systems and related applications in a W‐band.  相似文献   

12.
介绍了一种宽带放大器芯片,该放大器的工作频率覆盖了2~12 GHz,采用砷化镓(GaAs)赝配高电子迁移率晶体管(PHEMT)单片电路工艺实现。在一个宽带负反馈放大器的前面集成了一个幅度均衡器,使放大器的增益在整个带内具有7 dB的正斜率,频率低端(2 GHz)增益为3 dB,高端(12 GHz)为10 dB,输入输出电压驻波比为1.6∶1,饱和输出功率为20 dBm,芯片尺寸为2.0 mm×1.5 mm×0.1 mm。详细描述了电路的设计流程,并对最终的测试结果进行了分析。该芯片具有频带宽、体积小、使用方便的特点,可作为增益块补偿微波系统中随着频率升高而产生的增益损失。  相似文献   

13.
By using 0.15μm GaAs pHEMT (pseudomorphic high electron mobility transistor)technology,a design of millimeter wave power amplifier microwave monolithic integrated circuit(MMIC)is presented.With careful optimization on circuit structure,this two-stage power amplifier achieves a simulated gain of 15.5dB with fluctuation of 1 dB from 33 GHz to 37GHz.A simulated output power of more than 30dBm in saturation can be drawn from 3 W DC supply with maximum power added efficiency(PAE)of 26%.Rigorous electromagnetic simulation is performed to make sure the simulation results are credible.The whole chip area is 3.99mm2 including all bond pads.  相似文献   

14.
26-42 GHz SOI CMOS low noise amplifier   总被引:3,自引:0,他引:3  
A complementary metal-oxide semiconductor (CMOS) single-stage cascode low-noise amplifier (LNA) is presented in this paper. The microwave monolithic integrated circuit (MMIC) is fabricated using digital 90-nm silicon-on-insulator (SOI) technology. All impedance matching and bias elements are implemented on the compact chip, which has a size of 0.6 mm /spl times/ 0.3 mm. The supply voltage and supply current are 2.4 V and 17 mA, respectively. At 35 GHz and 50 /spl Omega/ source/load impedances, a gain of 11.9 dB, a noise figure of 3.6 dB, an output compression point of 4 dBm, an input return loss of 6 dB, and an output return loss of 18 dB are measured. The -3-dB frequency bandwidth ranges from 26 to 42 GHz. All results include the pad parasitics. To the knowledge of the author, the results are by far the best for a silicon-based millimeter-wave LNA reported to date. The LNA is well suited for systems operating in accordance to the local multipoint distribution service (LMDS) standards at 28 and 38 GHz and the multipoint video distribution system (MVDS) standard at 42 GHz.  相似文献   

15.
基于0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,成功研制了一款30~34 GHz频带内具有带外抑制特性的低功耗低噪声放大器(LNA)微波单片集成电路(MMIC)。该MMIC集成了滤波器和LNA,其中滤波器采用陷波器结构,可实现较低的插入损耗和较好的带外抑制特性;LNA采用单电源和电流复用结构,实现较高的增益和较低的功耗。测试结果表明,该MMIC芯片在30~34 GHz频带内,增益大于28 dB,噪声系数小于2.8 dB,功耗小于60 mW,在17~19 GHz频带内带外抑制比小于-35 dBc。芯片尺寸为2.40 mm×1.00 mm。该LNA MMIC可应用于毫米波T/R系统中。  相似文献   

16.
基于0.25μm GaAs增强/耗尽(E/D)型赝配高电子迁移率晶体管(PHEMT)工艺,设计并实现了一款集成了6 bit并行驱动器的数字衰减器单片微波集成电路(MMIC)。该衰减器采用T型衰减网络结构,不仅缩小了芯片面积,并且可实现较好的衰减精度和衰减附加相移。芯片在片测试结果表明,在-5 V电源电压下驱动器的静态电流为1.8 mA,响应速度为25 ns。在9~18 GHz频率范围内,衰减器芯片的插入损耗不大于3.6 dB,均方根衰减精度不大于0.7 dB,衰减附加相移为-2°~4°,输入电压驻波比(VSWR)不大于1.25∶1,输出VSWR不大于1.5∶1。芯片尺寸为1.6 mm×0.6 mm×0.1 mm。该电路具有响应速度快、功耗低、面积小、衰减附加相移小等优点,可广泛应用于通信设备和微波测量系统中。  相似文献   

17.
设计制作了Ka频段高输出功率的单片功率放大器.基于河北半导体研究所的0.25μm栅长的75mm GaAsPHEMT工艺制作的三级功率放大器,芯片尺寸为19.25mm2(3.5mm×5.5mm).在32.5~35.5GHz的频率范围内,小信号线性增益大于16dB,带内平均1dB增益压缩点输出功率为29.8dBm,最大饱和输出功率为31dBm.  相似文献   

18.
报道了一种源耦合反馈单片有源环行器的研究结果、该单片电路采用实测FET的S参数进行微波CAD优化设计,内部包含有3个300μm栅宽的FET,芯片面积1.7mm×1.9mm。采用GaAs的离子注入平面工艺,芯片电路具有良好的均匀性、一致性。在3.5~4.5GHz内,电路插入损耗约7.5dB,隔离度为21~26dB,驻波比基本小于2。  相似文献   

19.
介绍了用Agilent ADS软件设计的一种反馈式GaAs MMIC宽带放大器。采用单级GaAs微波场效应管,电路结构上通过并联负反馈的形式增加带宽,可以覆盖2~18GHz频带,增益大于6dB,输入输出驻波比3∶1;采用5~8V单电源供电,电流35mA,芯片面积1.5mm×1.5mm×0.1mm。具有面积小,使用方便的特点,可以用来补充通道增益,也可以多级级联,用于增益需求比较高的场合,可广泛应用于各种微波系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号