首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations of lattice dynamics and thermodynamic properties of orthorhombic LiInS2 and LiInSe2 and chalcopyrite LiInTe2 have been performed within density functional perturbation theory using norm conserving pseudopotentials. Theoretical values of phonon mode frequencies are in good agreement with the experimental data available for these crystals obtained by methods of Raman spectroscopy and infrared one. In the whole frequency range a significant decrease of the vibrational frequencies is observed going from LiInS2 to LiInSe2 and LiInTe2, which is a consequence of the anion radius increase. The lattice vibrations of In-X (X = S, Se, Te) bonds are mainly located in the low-frequency and mid-frequency ranges, and the Li-X bond vibrations are dominated in the higher frequency range. The mixed covalent-ionic nature of the three compounds is manifested by Born effective charge data. The vibration patterns of orthorhombic LiInS2 and chalcopyrite LiInTe2 were discussed in detail. The temperature dependences of thermodynamic quantities (including the internal energy, free energy, heat capacity, entropy and the Debye temperature ΘD) of all the three compounds were also presented in this paper. It is proved that Debye stiffness increases from LiInTe2 to LiInSe2 and LiInS2.  相似文献   

2.
Cobalt ferrite CoFe2O4 films were fabricated on SiO2/Si(1 0 0) by the sol-gel method. Films crystallized at/above 600 °C are stoichiometric as expected. With increase of the annealing temperature from 600 °C to 750 °C, the columnar grain size of CoFe2O4 film increases from 13 nm to 50 nm, resulting in surface roughness increasing from 0.46 nm to 2.55 nm. Magnetic hysteresis loops in both in-plane and out-of-plane directions, at different annealing temperatures, indicate that the films annealed at 750 °C exhibit obvious perpendicular magnetic anisotropy. Simultaneously, with the annealing temperature increasing from 600 °C to 750 °C, the out of plane coercivity increases from 1 kOe to 2.4 kOe and the corresponding saturation magnetization increases from 200 emu/cm3 to 283 emu/cm3. In addition, all crystallized films exhibit cluster-like structured magnetic domains.  相似文献   

3.
BaTi0.87Sn0.13O3 (BTS13) nanopowder was prepared by low-temperature aqueous synthesis (LTAS) method. The evolution of the structure and microstructure of the precursor precipitate, heated at temperatures up to 1000 °C was studied by TGA, FT-IR, SEM and XRD techniques. The dried precipitate showed a microstructure consisting of nano-sized grains (∼40 nm) with great tendency to agglomeration. BaTi0.87Sn0.13O3 single phase was obtained at 800 °C. The ceramics prepared from as-obtained BTS13 powders (60-70 nm) show good dielectric and ferroelectric characteristics. The dielectric constant was about 4800 and the dielectric loss (tan δ) was 0.229 at 1 kHz and at the Curie temperature (31 °C). The remanent polarization (Pr) and the coercive field (EC) of Ba0.97Ho0.03TiO3 ceramics, at 1 kHz, were Pr = 13 μC/cm2 and EC = 0.89 kV/cm. The ferroelectric parameters EC and Pr decrease with increasing frequency in the domain 100 Hz to 10 kHz.  相似文献   

4.
Ni80Al13Cr7合金为研究对象, 采用描述单个格点位置原子占位的时间和空间演化为特征的微观相场法, 研究了Al和Cr原子在(100)和(200)面上的原子占位变化与时效早期Ni3(Al, Cr)结构演化之间的关系. 研究表明, 在时效最初阶段, Al和Cr原子在(100)和(200)面上的成分序参数并不发生变化, 然而在两面上的长程序参数相等并随时间逐渐增大, 以等成分有序化的形式发生第一次原位转变, 形成低有序度的L10结构预析出相. 当有序度增大到一定值时, Al和Cr原子的成分序参数和长程序参数在(100)面上迅速增大, 而在(200)面上则迅速降低, 相结构发生第二次原位转变, L10结构逐渐向L12结构转化.  相似文献   

5.
In this work, first principles calculation of structural, electronic magnetic and elastic properties of the half-metallic ferromagnetic Heusler compound Co2MnSi are presented. We have applied the full-potential linearized augmented plane waves plus local orbitals (FP-L/APW+lo) method based on the density functional theory (DFT). For the exchange and correlation potential generalized-gradient approximation (GGA) is used. The computed equilibrium lattice parameters agree well with the available theoretical and experimental data. Elastic constants and their pressure dependence are also calculated. The calculated total magnetization of 5 μB is in excellent agreement with recent experiments. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, entropy, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions.  相似文献   

6.
We have calculated the band structures of Si clathrate, M8Si38Ga8 (M = Na, K, Rb, and Cs), using the density-functional theory under the generalized gradient corrected local density approximation, where M is the encapsulated guest alkali atom. They are found to be indirect semiconductors with the calculated gaps (Eg) from 0.45 to 0.89 eV, which should be compared to the calculated gap of 0.65 eV of crystalline Si with the diamond structure. The gaps become wider with the promotion to the heavier guest alkali atoms and the reasons of gap widening are discussed using the calculated dependence of Eg on the cell-volume of guest-free silicon clathrate (Si46). Effect of the substitutional elements in the clathrate framework (Al and In in place of Ga) was also discussed.  相似文献   

7.
Method of neutron diffraction was used to determine the temperature dependence of the Debye-Waller factor and the related thermal atomic displacements for two polymorphic modifications of cerium, namely, for β-Ce with a double hexagonal closed-packed (dhcp) structure and for γ-Ce with a face-centered cubic (fcc) structure. It has been shown that the phase transition does not lead to substantial changes in the root-mean-square thermal atomic displacements and that the Debye temperatures of the two modifications are close: 131 K for β-Ce and 127 K for γ-Ce. However, the relative (with respect to the lattice parameters) displacements along the axes change considerably. The transition from the anisotropic hexagonal to the isotropic cubic modification leads, because of a redistribution of thermal atomic displacements along the crystallographic axes, to a decrease in the maximum values of these quantities and to a weakening of their temperature dependence. It has also been shown that a change in the thermal atomic vibrations and in the vibrational contribution to the entropy of the polymorphic transformations is connected with the sign of the volume effect of the transformation (stronger upon a positive effect and weaker, upon a negative one). The reasons for this behavior are discussed.  相似文献   

8.
Pseudo-1-3 magnetostrictive particulate composites consisting of light rare earth (Sm and Nd)-based magnetostrictive Sm1−xNdxFe1.55 particles with the Nd content x of 0-0.56 and randomly distributed sizes of 10-180 μm embedded and aligned in a passive epoxy matrix are fabricated using the particulate volume fraction of 0.5. The quasistatic magnetomechanical properties of the composites are investigated and the results are compared with their monolithic alloys for various x. The composites exhibit similar qualitative trends in properties with the alloys for all x. The Sm0.92Nd0.08Fe1.55 composite shows a large unsaturated magnetostriction λ of −530 ppm at 500 kA/m and a high piezomagnetic coefficient d33 of −2.0 nm/A at 100 kA/m as a result of the magnetocrystalline anisotropy compensation between Sm3+ and Nd3+ ions in the Sm0.92Nd0.08Fe1.55 alloy.  相似文献   

9.
The effect of the composition on the electrical properties of BaBi1−xSbxO3 (0 ≤ x ≤ 0.5) negative temperature coefficient (NTC) thermistors was studied. Major phases present in the sintered bodies of BaBi1−xSbxO3 (0 < x < 0.5) ceramics were BaBi0.5Sb0.5O3 compounds with a rhombohedral structure and BaBiO3 compounds with a monoclinal structure. Most pores were located in the grains of BaBiO3 and BaBi0.5Sb0.5O3 ceramics. It was apparent that the ρ25 and B25/85 constant of the thermistors increased with increasing Sb content.  相似文献   

10.
Cr2AlC coating was deposited at 370 and 500 °C by D.C. magnetron sputtering from an as-synthesized bulk Cr2AlC target. The phase composition and preferential orientation of the coating were investigated using XRD, and the microstructure of the coating was characterized by TEM. Results indicated that Cr2AlC coating with a strong (110) preferential orientation could be obtained. The coating microstructure was clearly affected by the deposition temperature. At 370 °C, the deposited coating possessed a triple-layered structure with an α-(Cr, Al)2O3 inner layer, an amorphous intermediate layer and a crystalline Cr2AlC outer layer. However, the coating deposited at 500 °C had a single-layered structure consisting of crystalline Cr2AlC layer. The growth mechanism of the Cr2AlC coating at different deposition temperatures is discussed.  相似文献   

11.
A new type of Pt + Hf-modified γ′-Ni3Al + γ-Ni-based coating has been developed in which deposition involves Pt electroplating followed by combined aluminizing and hafnizing using a pack cementation process. Cyclic oxidation testing of both Pt + Hf-modified γ′ + γ and Pt-modified β-NiAl coatings at 1150 °C (2102 °F), in air, resulted in the formation of a continuous and adherent α-Al2O3 scale; however, the latter developed unwanted surface undulations after thermal cycling. Type I (i.e. 900 °C/1652 °F) and Type II (i.e. 705 °C/1300 °F) hot corrosion behavior of the Pt + Hf-modified γ′ + γ coating were studied and compared to Pt-modified β and γ + β-CoCrAlY coatings. Both types of hot corrosion conditions were simulated by depositing Na2SO4 salt on the coated samples and then exposing the samples to a laboratory-based furnace rig. It was found that the Pt + Hf-modified γ′ + γ and Pt-modified β coatings exhibited superior Type II hot corrosion resistance compared to the γ + β-CoCrAlY coating; while the Pt + Hf-modified γ′ + γ and γ + β-CoCrAlY coatings showed improved Type I hot corrosion performance than the Pt-modified β.  相似文献   

12.
This paper investigates the structural transitions associated with different cooling rates from a high temperature disordered state and the effect of substitution of Ga atoms by Al atoms in Fe-Ga binary alloys on the ordering processes. Two iron-based low carbon (about 0.04 at.% C) alloys Fe-13 at.% Ga and Fe-8 at.% Al-3 at.% Ga are studied. Internal friction, dilatometric and calorimetric tests are carried out to check ordering in these alloys and contribution of structural defects to relaxation spectrum. Several thermally activated internal friction peaks have been observed and their activation parameters evaluated by means of temperature and frequency dependent internal friction tests using forced vibration. For most of these peaks physical mechanisms are proposed. Apart from these thermally activated relaxation peaks, a structural, frequency independent relaxation takes place at 250-300 °C. Dilatometric and DSC curves show the appearance of a contraction effect in the same temperature range. This effect was studied in alloys cooled down with different cooling rates. We believe that the frequency independent internal friction peak (denoted as the P3 peak in this paper) and peaks at dilatometric and DSC curves are controlled by the same structural mechanism and therefore the activation energy for this anelastic mechanism is derived from DSC data.  相似文献   

13.
Surfaces of cubic perovksite PbCrO3 in (0 0 1) plane are investigated through density functional theory. The plane wave pseudopotential method is applied with generalized gradient approximation scheme. Hubbard U correction (GGA + U) is included in all calculations in order to simulate on-site Coulomb interactions between Cr-d states. Two types of terminations, namely, PbO- and CrO2-terminations are considered in construction of the surfaces. Surfaces of both terminations show convergence at 9-layer slab geometry. The density of states calculations on the converged slab geometry yield a metallic behavior for both PbO- and CrO2-terminations. Both metal atoms, Pb and Cr, in the uppermost layer of the respective terminations, have inward atomic relaxations much larger in magnitude than the oxygen atoms of the respective layer. However, Cr atoms which are labeled as up and down according to their spin orientation show different relaxations. The interlayer distance between the uppermost layer and the first one next to it decreases in both PbO- and CrO2-terminated surface geometries. The calculations of the relative movement of the oxygen atom with respect to the Pb or Cr atom in each terminations give a positive rumpling in the uppermost layer.  相似文献   

14.
Pseudopotential plane-wave method based on density functional theory within the generalized gradient approximation for the exchange-correlation potential has been applied to study the structural, electronic, elastic and vibrational properties of the binary intermetallic Pd3V and Pt3V in the L12 phase. The optimized lattice constant, bulk modulus and its pressure derivative, independent single-crystal elastic constants and elastic wave velocities in three different directions are evaluated and compared with the available experimental and theoretical data. The polycrystalline elastic parameters, hardness coefficient, elastic anisotropy, Debye temperature are estimated. The electronic band structure, electronic total and partial densities of states, and total magnetic moment of the Pd3V and Pt3V alloys are computed and analyzed in comparison with the existing theoretical and experimental findings. Phonon-dispersion curves and their corresponding total and projected densities of states were obtained for the first time using a linear-response in the framework of the density functional perturbation theory.  相似文献   

15.
The samples of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite were synthesized by solid state reaction method for studying thermoelectric properties. The properties of Seebeck coefficient, electrical conductivity and thermal conductivity were measured in the high temperature ranging from 300 to 960 K. The results of Seebeck coefficient, electrical conductivity and power factor were increased with increasing Pt substitution and temperature. The thermal conductivity was decreased from 5.8 to 3.5 W/mK with increasing the temperature from 300 to 960 K. An important results, the highest value of power factor and ZT is 2.0 × 10−4 W/mK2 and 0.05, respectively, for x = 0.05 at 960 K.  相似文献   

16.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

17.
Sr2FexMo2−xO6 (x = 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5 wt.%) (SFMO) double perovskite oxides of different compositions have been prepared by sol-gel method. These materials were subjected to X-ray diffraction and found that crystal structure changes from tetragonal to cubic around x = 1.2 wt.%. Lattice parameters and unit cell volume have been calculated using X-ray diffraction data. Magnetization studies have been carried out using Vibrating Sample Magnetometer ranging from −15 kOe to +15 kOe and saturation magnetization (Ms) has been determined. Electrical resistivity and magnetoresistance studies have been carried out in the magnetic field range of −40 kOe to +40 kOe keeping the temperature constant at 5, 150 and 300 K using standard four-probe method. Resistivity studies have also been carried out in the temperature ranging from 5 to 300 K keeping the magnetic field constant at 0, 10, 20 and 40 kOe. Maximum degree of Fe/Mo ordering (ηmax) of SFMO has been calculated and compared with magnetic and transport properties. It has been found that there is a strong correlation between 3 parameters ηmax, Ms and MR (%), i.e. all of them show a maximum at x = 1.0 wt.% and decreases as x deviates from 1.0 in SFMO. It has been also found that there is a different resistivity behavior between x ≤ 1.2 wt.% and x > 1.2 wt.% samples of SFMO. Semiconductor metal transition temperature was found to be maximum at x = 1.0 wt.%.  相似文献   

18.
In the present study, laser surface alloying of aluminium with WC + Co + NiCr (in the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 0.003 m), with the output power ranging from 3 to 3.5 kW and scan speed from 0.012 m/s to 0.04 m/s by simultaneous feeding of precursor powder (at a flow rate of 1 × 10− 5 kg/s) and using He shroud at a gas flow rate of 3 × 10− 6 m3/s. The effect of laser power and scan speed on the characteristics (microstructures, phases and composition) and properties (wear and corrosion resistance) of the surface alloyed layer have been investigated in details. Laser surface alloying leads to development of fine grained aluminium with the dispersion of WC, W2C, Al4C3, Al9Co2, Al3Ni, Cr23C6, and Co6W6C. The microhardness of the alloyed zone is significantly improved to a maximum value of 650 VHN as compared to 22 VHN of the as-received aluminium substrate. The mechanism of microhardness enhancement has been established. The fretting wear behavior of the alloyed zone was evaluated against WC by Ball-on-disc wear testing unit and the mechanism of wear was established.  相似文献   

19.
The 773 K isothermal section of the phase diagram of the Ho-Co-Fe ternary system was investigated by using X-ray diffraction technique, metallographic analysis and scanning electron microscopy with energy dispersive analysis. The isothermal section of the ternary system consists of 6 three-phase regions, 16 two-phase regions and 11 single-phase regions. Three pairs of corresponding compounds of Ho-Co and Ho-Fe systems, i.e., Ho2Co17 and Ho2Fe17, HoCo3 and HoFe3, HoCo2 and HoFe2, form a continuous series of solid solution. At 773 K the compound Ho6Fe23−xCox was found to have a wide homogeneity range from 0 to 29 at.% Co. The maximum solid solubilities of Fe in Co, Ho2Co7, Ho12Co7 and Ho3Co were determined to be about 10, 9, 2 and 5 at.% Fe, respectively. The maximum solid solubility of Co in Fe is found to be 78 at.% Co.  相似文献   

20.
(1 − x)ZnMoO4-xTiO2 (x = 0.0, 0.05, 0.158, 0.25, and 0.35) composite ceramics were synthesized by the conventional solid state reaction process. The sintering behavior, phase composition, chemical compatibility with silver, and microwave dielectric properties were investigated. All the specimens can be well densified below 950 °C. From the X-ray diffraction analysis, it indicates that the triclinic wolframite ZnMoO4 phase coexists with the tetragonal rutile TiO2 phase, and it is easy for silver to react with ZnMoO4 to form Ag2Zn2(MoO4)3 phase and hard to react with TiO2. When the volume fraction of TiO2 (x value) increasing from 0 to 0.35, the microwave dielectric permittivity of the (1 − x)ZnMoO4-xTiO2 composite ceramics increases from 8.0 to 25.2, the Qf value changes in the range of 32,300-43,300 GHz, and the temperature coefficient τf value varies from −128.9 to 157.4 ppm/°C. At x = 0.158, the mixture exhibits good microwave dielectric properties with a ?r = 13.9, a Qf = 40,400 GHz, and a τf = +2.0 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号