首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《LWT》2004,37(2):247-253
Organic acids of cheeses made from raw (RA), pasteurized (PA; 72°C, 15 s) or pressure-treated (PR; 500 MPa, 15 min, 20°C) goats’ milk were qualitatively and quantitatively assessed during ripening. Nine organic acids (citric, pyruvic, malic, lactic, formic, acetic, uric, propionic and butyric) were analysed in each sample by HPLC.Milk treatment did not affect the total organic acids content of 1-day-old cheeses, which increased steadily from day 1 to day 60. At the end of ripening, RA and PR milk cheeses both exhibited higher concentration of organic acids than in those made from PA milk.Lactic acid was found in higher concentration in PR milk cheese from 30 days of ripening. The RA milk cheese, that showed the highest nonstarter lactic acid bacteria counts, were characterized by an elevated amount of propionic and acetic acids. These cheeses also were negatively correlated with both pyruvic and citric acid contents. The PA milk cheese showed a high level of malic acid, and was clearly differentiate from RA and PR milk cheeses by its low level of butyric acid.  相似文献   

2.
Two batches of Tenerife cheese were produced from pasteurised goats’ milk, one with a commercial starter and another with an autochthonous starter consisting of three selected strains of lactic acid bacteria isolated from artisanal Tenerife cheese. Influence of starter on the characteristics of the cheeses was evaluated. Owing to the composition of the starters, lactobacilli and leuconostocs varied significantly between both cheeses. However, the type of starter did not significantly affect the physicochemical and proteolytic properties of the cheeses. In general, cheeses made with autochthonous starter received higher scores for sensory attributes, especially for aroma, than those made with commercial starter.  相似文献   

3.
Levels of volatile compounds in Arzúa-Ulloa and Tetilla cheeses manufactured from raw and pasteurized milk were investigated. Analysis of volatile compounds in six raw milk (RM) starter-free cheeses (15–45 days old) and six pasteurized milk (PM) cheeses made with deliberately added starters (15–45 days old) manufactured in different dairies, was performed on an automatic dynamic headspace apparatus coupled to a GC/MS. The volatile fraction of RM cheeses displayed 46 volatile compounds (34 for PM cheeses) including fatty acids, esters, aldehydes, alcohols, ketones, hydrocarbons and sulphur compounds. Fatty acids and several esters were only detected in RM cheeses. Moreover, the highest contents of methylketones, secondary alcohols and branched-chain aldehydes and alcohols were also observed in RM cheeses. All results confirm more intense lipolysis in RM cheeses than in PM cheeses. In addition, branched-chain aldehydes and alcohols were significantly more abundant in RM than in PM cheeses, which indicates that catabolism of branched-chain amino acids was significantly higher in RM cheeses. This study has provided useful information which will allow the selection of starter and non-starter bacteria more suitable for manufacturing Arzúa-Ulloa and Tetilla pasteurized milk cheeses with organoleptic characteristics similar to those of traditional raw milk cheeses.  相似文献   

4.
《Food microbiology》2001,18(1):45-51
The bacteriological quality during ripening of raw (RA), pasteurized (PA; 72°C, 15 s) and pressure-treated (PR; 500 MPa, 20°C, 15 min) goat milk assessed by enumeration of total bacteria, psychrotrophic bacteria, Enterobacteriaceae, lactobacilli, enterococci, Micrococcaceae and lactococci was evaluated. The high pressure treatment applied was as efficient as pasteurization in reducing the bacterial population of milk. Experimental cheeses were made from RA, PA and PR milks to study the microbial population during ripening. Lactobacilli and lactococci were the predominant microbiota present during ripening in all the cheeses. There were no differences in numbers of starter bacteria during ripening. However, lactobacilli counts for RA milk cheese were significantly higher than for PA and PR cheeses in all the ripening stages studied. Micrococcaceae and enterococci remained at a secondary level, and no differences were observed between cheeses at the end of ripening. On the other hand, the number of Enterobacteriaceae decreased during ripening, but faster in PR milk cheese than in PA and RA milk cheeses. The results of this study suggest that goat cheese made from PR milk had similar microbiological characteristics to PA milk cheeses.  相似文献   

5.
Changes in the microbial flora of batzos cheese made from raw ovine milk were studied during ripening. Lactic acid bacteria and Enterobacteriaceae were the predominant groups of micro-organisms. Cheeses manufactured in summer had higher microbial counts than those made in spring, with the exception of staphylococci. Nevertheless, Enterobacteriaceae and coliforms decreased more rapidly in cheese made in summer and counts at the end of storage were lower than those in spring cheese.
Enterococci predominated in the ripened curd of cheese made in spring, whereas lactobacilli were the most abundant lactic acid bacteria in cheese made in summer. Enterococcus faecium was the predominant species in spring, and Lactobacillus paracasei ssp. paracasei predominated in cheese made in summer. The pH of the cheeses was > 5.0 throughout ripening, and NaCl-in-moisture content (> 8.0%) permitted the growth and survival of salt-tolerant micro-organisms. αs1-Casein degraded at a faster rate than β-casein; both caseins were hydrolysed more rapidly in spring than in summer. The free amino acid content became higher in summer cheese (566.24–3460.25 µg/g of glycine equivalent) than in spring cheese because of the progress of ripening. Moreover, the milk fat of the cheese was degraded more in the summer than in the spring. The results suggest that there could be advantages to using starter cultures and improving the level of hygiene during milk and cheese production in order to eliminate undesirable micro-organisms and standardize cheese quality.  相似文献   

6.
Kashar cheeses were manufactured from pure ovine (OV), bovine (BV) and caprine (CP) milk, and the chemical composition, cheese yield, proteolysis, hardness, meltability and volatile composition were studied during 90 days. Gross chemical composition, cheese yield and level of proteolysis were higher in OV cheeses than those of BV or CP cheeses. Glu, Val, Leu, Phe and Lys were the most abundant free amino acids (FAA) in the samples, and the concentrations of individual FAA were at the highest levels in OV cheeses with following BV and CP cheeses. Urea‐PAGE patterns and RP‐HPLC peptide profiles of the BV cheeses were completely different from the small ruminants’ milk cheeses (OV or CP). Higher and lower hardness and meltability values were observed in CP cheeses, respectively. OV cheeses resulted in higher levels of the major volatile compounds. In conclusion, the Kashar cheese made using OV milk can be recommended due to high meltability, proteolysis and volatiles.  相似文献   

7.
In this work, a new encapsulating matrix, alginate–goats’ milk–inulin, was used to encapsulate Bifidobacterium animalis subsp. lactis BB‐12. The addition of inulin resulted in capsules with a compact structure, and a higher probiotic cell count under simulated gastrointestinal conditions and in probiotic goats’ milk yoghurt during refrigerated storage. Encapsulation of the probiotic bacteria led to slower post‐acidification yoghurts. The results of this study showed that the alginate–goats’ milk–inulin matrix has potential to be used as a new encapsulation material to encapsulate probiotics for use in goats’ milk‐based probiotic fermented dairy products, avoiding the cross‐contamination caused by using capsules based on cows’ milk.  相似文献   

8.
Lipolysis was evaluated in Urfa cheese made from raw and pasteurized goats’ and cows’ milk with mesophilic or thermophilic cultures. The acid degree values (ADVs) of the cows’ milk cheeses were significantly (P < 0.05) higher until 60 d of storage than that of cheese made from goats’ milk. Total free fatty acid (FFA) contents of goats’ milk cheese were significantly (P < 0.001) lower than that of cows’ milk cheese throughout ripening, whereas goats’ milk cheese flavour was higher (P < 0.05) than cows’ milk cheese. Pasteurization of milk prior to cheese-making has a negative influence, not only on the level of lipolysis throughout ripening, but also on the relative amounts of short chain FFAs and sensory properties of the cheeses (P < 0.001). Cheese produced without starter bacteria underwent significantly (P < 0.05) higher lipolysis than cheeses produced with mesophilic or thermophilic starter bacteria, while cheese made with thermophilic starter culture had similar flavour to cheese made without starter culture.  相似文献   

9.
The fate of 2 different Listeria innocua strains was analyzed during the production and ripening of smeared raw milk Greyerzer cheese (Gruyère). These strains were used as surrogates for the pathogenic Listeria monocytogenes, as they are physiologically very similar. Bacterial cells were added to the cheese milk at levels of 105 cfu/mL. During the first 24 h of cheese making, the number of the test strains decreased to a level of below 102 cfu/g. Obviously, the cooking temperature of 56°C and the subsequent slight temperature decrease to 50°C within 70 min contributed to a distinct reduction of Listeria counts. The counts in the cheese cores did not exceed 103 cfu/g within 12 wk of cheese ripening and Listeria was not detectable after 24 wk. In contrast to the cores of the cheeses of the 4 batches in this study, their rinds always contained a high listerial load of approximately 106 to 108 cfu/g throughout the entire ripening period. The smeared surface showed an increase of pH to alkaline values, corresponding to smear microbiota development. Coryneforms and Staphylococcus counts were stable at >107 cfu/cm2 over 175 d, whereas yeast counts decreased to about 105 cfu/cm2 at the end of ripening. The study shows that the smear culture had no noticeable anti-listerial potential. When removing the rind or portioning such smeared cheese loaves with a cutting device, a postprocess contamination of the core might occur, thus presenting a major hygienic risk.  相似文献   

10.
The study was conducted to evaluate the nutritional, textural and sensory characteristics of Camembert cheese made from goat milk, cow milk and their blends. The type of milk used affected yield, physicochemical properties and fatty acid profile of the cheeses. The percentages of C6:0, C8:0 and C10:0 acids were higher in the cheeses containing ≥ 75% goat milk. The sensory evaluation results showed differences in texture, colour, aroma and flavour among the cheeses. Cheeses made with the mixture of cow and goat milk particularly 50% goat milk mixed with 50% cow milk (50G:50C) maintained particular positive nutritional characteristics especially with respect to the mineral contents, fatty acids and consumer acceptability.  相似文献   

11.
The effect of 0.02% gum tragacanth, sodium caseinate or milk protein concentrate (MPC70) on the physiochemical, microstructural and textural properties of Lighvan cheese produced from bovine milk was investigated. The microstructure of cheese samples was studied by scanning electron microscopy (SEM), and the SEM micrographs were analysed using 3D images, surface plots and binarised SEM images. The texture parameters of bovine Lighvan cheese containing sodium caseinate were similar to those of ovine Lighvan cheese, and the microstructure of the MPC‐containing bovine Lighvan cheese was closest to that of ovine Lighvan cheese.  相似文献   

12.
Texture, proteolysis and flavour development in Ras cheeses made from raw or pasteurised milk with two different thermophilic lactic cultures were monitored during ripening. Results showed that at day 1 of manufacture, the moisture content and pH were lower in raw milk cheese than in pasteurised milk cheeses. Levels of water-soluble nitrogen, casein breakdown, free amino groups and free fatty acids were higher in cheese made from raw milk than in that made from pasteurised milk. Textural characteristics, such as hardness, cohesiveness and chewines, increased in all treatments during the first 60 days of ripening due to the reduction in the moisture level during the second stage of salting (dry salting during the first 60 days of ripening). Cheese made from raw milk received the highest texture and flavour scores by panellists.  相似文献   

13.
Majorero cheeses from six producers were analysed for basic physicochemical, textural, colour and sensorial characteristics. These analyses took place at different stages of the ripening process, from 15 to 90 days. The basic composition and the texture attributes of Majorero cheese changed significantly during the storage period (P < 0.001). Fracturability, hardness, adhesiveness and gumminess increased from 15 to 90 days of ripening while elasticity decreased. Furthermore, ripening time affected most of the sensory parameters analysed (P < 0.05): as the cheeses matured and became drier, there was an increase in roughness and elasticity in addition to odour and aroma intensity.  相似文献   

14.
为了了解水牛乳和荷斯坦牛乳切达干酪成熟期间的质量特性,采用了理化测定、质构测定和感官评定相结合的方法对其进行研究.结果表明:在成熟期90 d内,不同成熟温度下,两种干酪的蛋白质质量分数减少约为1%~4%,脂肪质量分数减少约为4%~10%,且成熟温度越高,质量分数下降越大,水牛乳干酪中蛋白和脂肪质量分数均高于荷斯坦牛乳干酪且两种成分的下降量也是水牛乳干酪更高;pH值呈现先下降后上升趋势.在90 d成熟期间,两种干酪的硬度先上升后下降,凝聚性上升,弹性下降.经感官评价,两种干酪在10℃成熟60天时风味最佳,水牛乳切达干酪略受偏爱.可用于水牛乳切达干酪成熟期内质量控制.  相似文献   

15.
目的:揭示冷藏原料乳制作的干酪成熟过程中生物胺含量变化规律,评价其质量安全性。方法:以冷藏24,48,72 h牦牛乳制作的硬质干酪为研究对象,利用高效液相色谱法对干酪成熟过程中生物胺含量进行测定。结果:在0~6个月成熟过程中,不同冷藏牦牛乳制作的硬质干酪中生物胺含量呈升高趋势。牦牛乳冷藏时间从24 h延长到72 h时,其干酪中总生物胺、2-苯乙胺、尸胺、酪胺和腐胺含量也依次增大。成熟4个月后,冷藏72 h牦牛乳制作的硬质干酪中各生物胺含量明显高于其余两组干酪。成熟6个月时,冷藏72 h原料乳制作的牦牛乳硬质干酪中生物胺总量和酪胺含量分别为(212.94±8.03),(81.04±3.92) mg/kg。结论:随着原料乳冷藏时间和干酪成熟时间的延长,干酪中生物胺含量增多,但是原料乳冷藏时间低于72 h时,其干酪中生物胺含量低于学者建议含量。  相似文献   

16.
Esterase activities of indigenous lactic acid bacteria isolated from goats’ milk and cheese were investigated. All of the strains exhibited esterase activity on α-naphthyl derivative of fatty acids of 2–6 carbon atoms. Lactobacillus fermentum ETC1 and L. bulgaricus ETC2 showed the highest specific activity on α-naphthyl acetate; L. rhamnosus ETC14 presented the highest specific activity on α-naphthyl butyrate and caproate. All enterococci strains presented the highest specific activities on α-naphthyl propionate, butyrate and caproate, and the lowest specific activities on α-naphthyl acetate. Pedicoccus pentocaseus ETC5 only had esterase activity on α-naphthyl acetate. The electrophoretic zymogram showed for each strain an individual enzyme profile on α-naphthyl acetate and revealed the presence of more than one esterase. L. plantarum ETC11 and Enterococcus faecium ETC9 showed four and five bands of esterase activity, respectively. The strains evaluated in this work showed different esterase activities, which were species and strain specific.  相似文献   

17.
The purpose of this study was to investigate the impact of adding nano-stabilisers on some properties of yoghurt. Carboxymethyl cellulose (CMC), sodium alginate (SA) and kappa-carrageenan (K-C) were used at 0.2%, 0.2% and 0.02% in their original forms and 0.15%, 0.15% and 0.015% in nano-form, respectively. The effects of these additives on yoghurt pH, titratable acidity, viscosity, syneresis, texture, colour, starter culture bacterial count, mould and yeast count, coagulation time and microstructure were studied. The use of nano-stabilisers increased viscosity, hardness and coagulation time; reduced syneresis and Streptococcus thermophilus count; and improved colour. Results indicated that nano-stabilisers improved the rheological and technological characteristics of yoghurt.  相似文献   

18.
The evolution of free fatty acids (FFA) was monitored over 168 d of ripening in Cheddar cheeses manufactured from good quality raw milk (RM), thermized milk (TM; 65°C × 15 s), and pasteurized milk (PM; 72°C × 15 s). Heat treatment of the milk reduced the level and diversity of raw milk microflora and extensively or wholly inactivated lipoprotein lipase (LPL) activity. Indigenous milk enzymes or proteases from RM microflora influenced secondary proteolysis in TM and RM cheeses. Differences in FFA in the RM, TM, and PM influenced the levels of FFA in the subsequent cheeses at 1 d, despite significant losses of FFA to the whey during manufacture. Starter esterases appear to be the main contributors of lipolysis in all cheeses, with LPL contributing during production and ripening in RM and, to a lesser extent, in TM cheeses. Indigenous milk microflora and nonstarter lactic acid bacteria appear to have a minor contribution to lipolysis particularly in PM cheeses. Lipolytic activity of starter esterases, LPL, and indigenous raw milk microflora appeared to be limited by substrate accessibility or environmental conditions over ripening.  相似文献   

19.
Two studies of retail fresh, ripened and semi-hard cheeses made from raw, thermized or pasteurized milk were undertaken in the UK during 2004 and 2005 to determine the microbiological quality of these products. Using microbiological criteria in European Commission Recommendations 2004/24/EC and 2005/175/EC, 2% of both raw, thermized (37/1819 samples) and pasteurized (51/2618 samples) milk cheeses were of unsatisfactory quality. Raw or thermized milk cheeses were of unsatisfactory quality due to levels of Staphylococcus aureus at 10(4)cfu g(-1), Escherichia coli at 10(5)cfu g(-1), and/or Listeria monocytogenes at 10(2)cfu g(-1), whereas pasteurized milk cheeses were of unsatisfactory quality due to S. aureus at 10(3)cfu g(-1) and/or E. coli at 10(3)cfu g(-1). Salmonella was not detected in any samples. Cheeses were of unsatisfactory quality more frequently when sampled from premises rated as having little or no confidence in management and control systems, and stored/displayed at above 8 degrees C. Raw or thermized milk cheeses were also more likely to be of unsatisfactory quality when they were unripened types, and pasteurized milk cheeses when they were: semi-hard types; from specialist cheese shops or delicatessens; cut to order. These results emphasize the need for applying and maintaining good hygiene practices throughout the food chain to prevent contamination and/or bacterial growth. Labelling of cheeses with clear information on whether the cheese was prepared from raw milk also requires improvement.  相似文献   

20.
Changes in nitrogen compounds during ripening of 40 batches of Manchego cheese made from raw milk (24 batches) or pasteurized milk (16 batches) at five different dairies throughout the year were investigated. After ripening for six months, degradation of p-kappa- and beta-caseins was more intense in raw milk cheese and degradation of alpha(s2)-casein in pasteurized milk cheese. Milk pasteurization had no significant effect on breakdown of alpha(s1)-casein. Hydrophobic peptide content did not differ between raw and pasteurized milk cheese, whereas hydrophilic peptide content was higher in raw milk cheese. There were no significant differences between seasons for residual caseins, but hydrophobic peptides were at a higher level in cheese made in autumn and winter and hydrophilic peptides in cheese made in winter and spring. Raw milk cheese had a higher content of total free amino acids and of most individual free amino acids than pasteurized milk cheese. The relative percentages of the individual free amino acids were significantly different for raw milk and pasteurized milk cheeses. The relative percentages of Lys and lie increased, while those of Val, Leu and Phe decreased during ripening. There were also seasonal variations within the relative percentages of free amino acids. In raw milk cheeses, Asp and Cys were relatively more abundant in those made in autumn, Glu and Arg in cheeses made in winter, and Lys and Ile in cheeses made in spring and summer. Biogenic amines were detected only in raw milk cheese, with the highest levels of histamine, tryptamine and tyramine in cheeses made in spring, winter and spring, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号