首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 2 毫秒
1.
Synthesis of larger particles of conductive polymers is usually favorable due to higher conductivity (as a result of lesser interfacial resistance). On the other hand, advantages of nanostructured materials are well known. Thus, it is desirable to fabricate large particles that have nanostructure, to gain double advantage. A simple method based on chemical polymerization under centrifugal forces is proposed to achieve this goal. It was typically employed for a well‐known conductive polymer, namely, polyaniline to fabricate large particles (e.g., 400 μm) with internal nanostructure of ~100 nm. This also significantly increases the electrical conductivity of the polymer. This is indeed a simple approach, which can be easily performed using a conventional centrifuge system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6060–6063, 2006  相似文献   

2.
With using the carbon nano-tube (CNT) of high chemical activity, nano-TiCx particles with different growth shapes were synthesized through the self-propagating high temperature in the 80 wt.% metal (Cu, Al, and Fe)-Ti-CNT systems. The growth shapes of the TiCx particles are mainly octahedron in the Cu- and Al-Ti-CNT systems, while mainly cube- and sphere-like in the Fe-Ti-CNT system.  相似文献   

3.
This study assessed adhesion of bulk-fill resin-composites as core and post materials only versus the use of fiber resin composite (FRC) posts. Human teeth (N?=?84) were cut at the CEJ and endodontically treated and randomly divided into seven groups: TP: Titanium post (Flat Head T); SFRC: S2-glass FRC (Pinpost); EFRC1: E-glass FRC (GC Everstick) directly bonded; GFRC: E-glass FRC (Glassix Nordin); EFRC2: E-glass FRC (Everstick); BF1: Bulk-fill resin (Surefill SDR); BF2: Bulk-fill resin (SonicFill). Groups TP, SFRC, EFRC and GFRC were cemented (Panavia 21), while other groups were bonded directly to the intraradicular dentin. The core parts were constructed using a resin composite (G-aenial) except for Groups BF1 and BF2. The core-cervical dentin interface was loaded under shear forces. Push-out tests were performed in a Universal Testing Machine (1?mm/min). Data (MPa) were analyzed using two-way ANOVA and Tukey`s tests (α?=?0.05). Not the root level (p?>?0.05) but the type of core and post material significantly affected shear and push-out bond results (p?<?0.001). BF1 (9.2?±?2.1) and BF2 (9.3?±?3.1) showed significantly lower bond strength to the cervical dentin (p?<?0.05) compared to other groups (11.6?±?2.5–19?±?6.8). FRC post types did not show significant difference being higher than those of TP, BF1 and BF2 (0.57?±?0.37–2.34?±?1.98) (p?>?0.05). Partial cohesive core fracture was more common while BF1 and BF2 showed exclusively adhesive failures. Cohesive failure in the cement was frequent in Group TP (53%) compared to other groups (3–24%). BF1 and BF2 presented exclusively complete adhesive failure of the bulk-fill material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号