首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
采用循环伏安法制备聚苯胺(PAN)/聚砜(PSF)复合膜修饰电极,在其上电沉积铂粒子,制得载铂聚苯胺/聚砜复合膜修饰电极,用循环伏安法和交流阻抗法研究它对甲醇的电催化氧化行为。复合膜的化学组分用FTIR进行表征,复合膜内层载铂后的表面形态用SEM进行表征。结果表明,复合膜的内层(与工作电极接触的一面)是聚苯胺,外层(与溶液接触的一面)是聚砜,铂粒子在复合膜内层的多孔聚苯胺上均匀沉积,从而使载铂聚苯胺/聚砜复合膜修饰电极对甲醇有好的电催化氧化性能。  相似文献   

2.
载银抗菌新型铝材料的研制   总被引:1,自引:0,他引:1  
马燕星  宋永辉  郁万斌 《广州化工》2009,37(9):114-115,128
在经过阳极化处理的铝板表面采用吸附、电沉积的方法,将金属银沉积于氧化膜的微孔中,并利用金相显微镜观察了形成的载银材料表面的情况,对不同的沉积条件下生成的材料进行了分析讨论。结果表明,在AgNO3溶液电沉积过程中,加入适量的保护剂,可以使沉积在铝板表面及氧化膜微孔中的银颗粒粒径变小,分布均匀,提高载银铝材料的表面性能。  相似文献   

3.
We report on a template based solid state electrochemical method for fabricating silver nanowires with predefined diameter, depending only on the pore diameter of the template. As templates we used porous silicon with pore diameters in the μm range and porous alumina with pore diameters in the nm range. The template pores were filled with silver sulfide (a mixed silver cation and electronic conductor) by direct chemical reaction of silver and sulfur. The filled template was then placed between a silver foil as anode (bottom side) and a microelectrode (top side) as cathode. An array of small cylindrical transference cells with diameters in the range of either micro- or nanometers was thus obtained. By applying a cathodic voltage to the microelectrode silver in the form of either micro- or nanowires was deposited at about 150 °C. The growth rate is controllable by the electric current.  相似文献   

4.
A procedure for preparing PbO2-based electrodes with a titanium substrate is proposed. A platinum underlayer is first deposited on Ti by metal organic chemical vapor deposition (MOCVD), followed by the electrodeposition of the PbO2 layer. The prepared Ti/Pt/PbO2 anodes were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) before being used for oxidation of Cr(III) in sulphuric acid. The current efficiency was determined for that electrodes and the results were compared with those obtained with Pb/PbO2 and Ebonex®/PbO2 electrodes with different pH conditions. The Ti/Pt/PbO2 were found to have a very good electrochemical behaviour (current efficiency: φ=0.93 for pH 2), and may be used as dimensionally stable anodes for the oxidation of Cr(III).  相似文献   

5.
于磊  张建华  李怀祥 《广州化工》2014,(3):44-45,49
采用n型单晶硅经光电化学阳极刻蚀成多孔硅,然后用TiO2和硝酸银溶液修饰多孔硅表面,通过电流-电压关系,时间-电流密度关系等方法研究几种复合多孔硅电极的光电性能,发现用TiO2和金属膜修饰的多孔硅电极光电流敏感,启动电压低,亮暗电流比明显,表现了更好的电极稳定性。  相似文献   

6.
Electroplating of II-VI semiconductors like ZnSe into porous silicon can be an efficient and low cost method to fill the porous volume with a transparent and conductive material. With n-type porous layers, ZnSe impregnation is more effective near the sample surface because of reaction rate limitations due to diffusion in the electrolyte. In this paper, it is shown that the deposition of ZnSe into p-type porous silicon can be localized in the lower part of the porous layer if the reduction reaction rate is monitored by limiting the charge carrier supply. This can be done by controlling the power of the laser beam which photo-generates the carriers at the bottom of the pores. Studying the porous layer chemical composition by Auger electron spectroscopy confirms that the deposit is localized at the pore bottom, whereas the changes in the chemical composition of the porous silicon surface are analyzed by infra-red spectroscopy.  相似文献   

7.
ABSTRACT: Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum and rhodium.  相似文献   

8.
Thin film electrodes are prepared by thermal evaporation of nanometer thick layers of metal oxide and platinum on a gas diffusion layer (GDL), in order to evaluate different metal oxides’ impact on the activity and stability of the platinum cathode catalyst in the polymer electrolyte fuel cell. Platinum deposited on tin, tantalum, titanium, tungsten and zirconium oxide is investigated and the morphology and chemistry of the catalysts are examined with scanning electron microscopy and X-ray photoelectron spectroscopy. Cyclic sweeps in oxygen and nitrogen are performed prior and after potential cycling degradation tests. Platinum seems to disperse better on the metal oxides than on the GDL and increased electrochemically active surface area (ECSA) of platinum is observed on tin, titanium and tungsten oxide. A thicker layer metal oxide results in a higher ECSA. Platinum deposited on tungsten performs better than sole platinum in the polarisation curves and displays higher Tafel slopes at higher current densities than all other samples. The stability does also seem to be improved by the addition of tungsten oxide, electrodes with 3 nm platinum on 3, 10 and 20 nm tungsten oxide, performs better than all other electrodes after the accelerated degradation tests.  相似文献   

9.
The electrodeposition of silver on platinum from solutions in the molten nitrate eutectic NaNO3—KNO3 has been studied using chronopotentiometry, cyclic voltammetry and the potential step technique. In each case, the early stages of metal deposition are shown to be controlled by a nucleation process. Similar results were also obtained from studies of electrodeposition from aqueous solution, ie of silver on platinum and graphite and of mercury on graphite. Unless allowance is made for the effects of nucleation, anomalous diffusion coefficients will be obtained. The potentiostatic growth transients are in accord with a process of instantaneous nucleation and subsequent hemispherical growth, although the observed concentration dependence is at variance with that predicted by existing theories.  相似文献   

10.
Solid-state dye-sensitized solar cells based on highly porous ZnO films prepared by template-assisted electrodeposition as electron collector, the indoline dye D149 as sensitizer and CuSCN as hole collector have been prepared using three different methods, namely impregnation with saturated CuSCN solution, successive ionic layer adsorption and reaction (SILAR) and electrodeposition, for filling the pores in the ZnO with CuSCN. The highest pore filling and the highest conversion efficiency of 0.46% were achieved with the impregnation method, while SILAR led to a very low pore filling, causing very low photocurrents, and electrodeposition led to short-circuiting between the CuSCN and the conducting substrate of the ZnO sample despite the presence of a compact ZnO bottom layer between the porous ZnO layer and the conducting layer, causing very low open-circuit voltages.  相似文献   

11.
Well-defined silver and gold dendrites are prepared on silicon substrates in aqueous fluoride acid solution containing AgNO3 and KAuCl4, respectively. In cases of electroless platinum and copper deposition in fluoride acid solution, no corresponding metal dendrites but platinum microcrystallines and copper granular-crystallines are formed. Our experiments found that the morphological selection of electroless metal deposits is related to the microstructure of etched silicon. A possible template mechanism and affecting factors for the morphological selection of electroless metal deposits are discussed.  相似文献   

12.
The surface modification of gold electrodes with platinum and the electrocatalytic oxidation of ethylene glycol on Pt-modified Au electrodes are investigated by cyclic voltammetry. Platinum modification is performed by the electrochemical deposition of platinum on polycrystalline gold electrodes, and the Pt-modified Au electrodes with different amount of the deposited platinum are used for the ethylene glycol oxidation in alkaline and acidic solutions. It is shown that oxidation potential for the ethylene glycol oxidation on the Pt-modified Au electrodes shifts significantly negative compared with that on Au electrodes, nearly same oxidation potentials as that on Pt electrodes are observed, and peak current density of the ethylene glycol oxidation is dependent on the amounts of the deposited platinum on gold surface, much higher peak current densities than that on Au and Pt electrodes can be obtained. The low oxidation potential and high peak current density indicate the enhanced reactivity of Au electrodes by the platinum modification. The characteristics of the Pt-modified Au electrodes are found to be similar to that of Pt electrodes, and the reactivity of the Pt-modified Au electrodes is mainly attributed to the deposited platinum.  相似文献   

13.
The conditions under which ohmic controlled metal electrodeposition occurs are discussed using a simple mathematical model. It is shown that ohmic controlled electrodeposition can be operative if the value of the exchange current density for the electrodeposition process is more than 10 times larger than the corresponding value of the limiting diffusion current density. In this case, a linear dependence of the current density on overpotential up to the value of the limiting diffusion current density can be observed. On the other hand, the initiation of dendrite growth under these circumstances is possible, even at very low values of overpotential, at the moment when the limiting diffusion current density is attained in potentiostatic electrodeposition. In this way, instead of a limiting diffusion current density plateau, an inflection point on the polarization curve can be observed, since dendritic growth is followed by an increase in the deposition current density. At the same time, it is shown that the ensemble of tips of dendrites can behave as an ensemble of microelectrodes working independently under mixed or activation control due to the absence of a common diffusion layer. This was confirmed by deposition of copper on a copper dendritic electrode and by silver electrodeposition from a silver nitrate solution onto a graphite substrate.  相似文献   

14.
In the present work, the influence of several metals (Co, Ru, Pd, Os, Pt, Cu, Pb), deposited on a carbon paste electrode, towards silver electrodeposition was tested. First, adequate conditions for the electrodeposition of metals on the electrode were found. Then, the cyclic voltammograms registered (silver deposition curves and analytical signals) showed that Co, Cu, Pt and Pd were able to accelerate silver electrodeposition. Finally, a valid methodology for the detection of cisplatin was established. It is based on the deposition of silver on a Pt (from cisplatin) modified electrode and the analytical signal corresponds to the anodic stripping of the deposited silver. A limit of detection of 3.2 × 10−9 mol dm−3 (1 ng cm−3) cisplatin was obtained.  相似文献   

15.
Raman scattering from porous silicon layer into which silver is immersion-plated was studied. Ag-deposited samples show extra Raman bands. Heat treatment of the Ag-deposited samples results in a great decrease in such Raman bands. Also dipping in hydrofluoric acid solution causes a spectral change. Some comments on the assignment of the Raman peaks of the Ag-deposited porous silicon are given, and the structure of porous silicon on which metal is immersion-plated is discussed.  相似文献   

16.
Z.D. Wei  L.L. Li  Z.T. Xia 《Electrochimica acta》2005,50(11):2279-2287
The research aims to increase the utilization of platinum (Pt) catalysts and thus to lower the catalyst loadings in the electrode for oxygen reduction reaction (ORR). The electrodeposition of Pt was performed on a rotation disk electrode (RDE) of glass carbon (GC), on which a layer of Nafion-bonded carbon of Vulcan XC 72R was dispersed in advance. The behaviors of Pt RDE and GC RDE in an aqueous solution containing HCl and H2PtCl6 were firstly studied. It was found that Pt deposition could be achieved if the electrode potential is controlled below −0.20 V versus (saturated-potassium-chloride silver chloride electrode) SSCE. However, quite a high overpotential is necessary if a quick and apparent deposition were required. Unfortunately, at a high overpotential, the hydrogen evolution would be unavoidable and even accelerated by the formation of nanometer size of Pt particles on the RDE. It was found that it is futile to increase platinum deposits just through extending the deposition time. It was also found that too large deposition current is not helpful for increase of platinum deposition because most of the current was consumed on hydrogen evolution in this case. It has been confirmed that it is conducive to richen Pt ions, present in the form of anionic complex in solution, onto the working electrode to be deposited. It is also helpful to eliminate the hydrogen bubbles formed on the working electrode, i.e., uncatalyzed carbon electrode (UCE), by imposing a positive current on the UCE for a length of time in advance of each cathodic deposition. The potential changes during deposition were recorded. Cyclic voltammograms (CV) of electrodes in 0.5 M H2SO4 before and after the deposition were used to assess loading of metal catalysts in a wide range of potential from −0.20 to 1.1 V versus SSCE. The results have shown that the performance of such an electrode with loadings estimated to be 50 μg Pt/cm2 is much better than those of a conventional electrode with loadings of 100 μg Pt/cm2.  相似文献   

17.
The electrochemical deposition of polypyrrole (PPy) on p-Si(1 0 0) electrodes was investigated. The electrodeposition was performed in aqueous electrolyte solutions utilising cyclic voltammetry. Thin, adhesive, uniform PPy films were successfully deposited on p-Si(1 0 0) electrodes. The Si/PPy interface was characterised with infrared spectroscopic ellipsometry (IR-SE) and photoluminescence (PL) measurements to obtain information of a possible oxidation of the Si interface and charge carrier recombination at the interface, respectively. Very small amounts of interfacial silicon oxides have been found at the Si/PPy interface. PL measurements lead to the assumption that electrodeposition of PPy onto the Si electrodes generated only very few additional non-radiative recombination-active (nr) defects. Hence, polypyrrole is an excellent passivation of nr defects at the silicon surface.  相似文献   

18.
Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.  相似文献   

19.
Stable silver thin films were prepared either by chemical deposition or by argon sputtering on germanium and silicon substrates, respectively, and used as electrodes for in situ infrared spectroscopy experiments with a Kretschmann internal reflection configuration. The spectra obtained for acetate anions adsorbed from neutral solutions showed a noticeable intensity enhancement (SEIRA effect). This enhanced absorption has been related to the surface structure of the films that have been characterized by ex situ STM and in situ electrochemical measurements (lead underpotential deposition, UPD). STM images of the chemically deposited silver films show mean grain sizes ranging from ca. 20 to 90 nm for deposition times between 2 and 20 min, and the absence of flat domains. On the other hand, STM images of the films deposited by argon sputtering show mean grain sizes around 30 nm for a film growth rate of 0.05 nm s−1 and 70 nm for a film growth rate of 0.005 nm s−1. In this latter case, atomically flat domains up to 50 nm wide have been observed. This observation is consistent with a more defined voltammetric profile for lead UPD, that indicates a higher degree of surface order. Moreover, the roughness factor obtained from the charge density involved in lead UPD in the case of the sputtered silver film is lower than that measured for the chemically deposited silver film. All these structural data can be connected with the observations on the effect of deposition conditions of the silver film on the SEIRA effect for adsorbed acetate. Maximum enhancement is observed for chemically deposited films and sputtered films at high deposition rate for which the grain size is around 40-60 nm. The increase of the grain size for the sputtered silver films deposited at decreasing deposition rates can be related to the observed decrease in the SEIRA effect.  相似文献   

20.
Multilayer, polytetrafluoroethylene (PTFE)-bonded gas diffusion-type electrodes were prepared by the rolling method. Changing the electrode structure and manufacturing method improved alkaline fuel cell performance. Activated carbon or carbon black was used as the support material, with platinum as a catalyst and nickel screen as the backing material. Double-layer electrodes possessed both active and diffusion layers on the backing layer. However, the single-layer electrodes had only the active layer on the backing layer. The electrodes were prepared by using different PTFE contents and platinum loadings. In this study the surface photographs of the electrodes were taken with a scanning electron microscope. Elemental analyses of the surface elements were performed by energy dispersive X-ray spectroscopy (EDXS). Electrodes having activated carbon on their surfaces were observed to possess a nonuniform and porous structure. These electrodes showed better performance than electrodes having carbon black, which presented a uniform and nonporous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号