首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A one-dimensional, steady-state, two-phase direct methanol fuel cell (DMFC) model is developed to precisely investigate complex physiochemical phenomena inside DMFCs. In this model, two-phase species transport through the porous components of a DMFC is formulated based on Maxwell–Stefan multi-component diffusion equations, while capillary-induced liquid flow in the porous media is described by Darcy's equation. In addition, the model fully accounts for water and methanol crossover through the membrane, which is driven by the effects of electro-osmotic drag, diffusion, and the hydraulic pressure gradient. The developed model is validated against readily available experimental data in the literature. Then, a parametric study is carried out to investigate the effects of the operating temperature, methanol feed concentration, and properties of the backing layer. The results of the numerical simulation clarify the detailed influence of these key designs and operating parameters on the methanol crossover rate as well as cell performance and efficiency. The results emphasize that the material properties and design of the anode backing layer play a critical role in the use of highly concentrated methanol fuel in DMFCs. The present study forms a theoretical background for optimizing the DMFC's components and operating conditions.  相似文献   

2.
The effects of the design parameters of the anode diffusion layer (DL), including the PTFE loading in the backing layer (BL), and the carbon and PTFE loading in the microporous layer (MPL), on water transport through the membrane and the performance of a liquid-feed direct methanol fuel cell (DMFC) are experimentally investigated. The results indicate that increasing the PTFE loading in the BL and introducing a MPL could decrease water crossover through the membrane without sacrificing cell performance when the feed methanol concentration is increased. It is also found that changing the PTFE loading in the MPL has little effect on water crossover, whereas increasing the carbon loading in the MPL could noticeably decrease the water-crossover flux. Nevertheless, the ability of the MPL to reduce water crossover is limited by the presence of a number of mud cracks. To reduce further the water-crossover flux, a crack-free MPL made of multi-walled carbon nanotubes (MWCNTs) and PTFE is proposed. Tests indicate that the DMFC with the nanotube MPL results in a much lower water-crossover flux than a conventional carbon-powder MPL. More importantly, the use of the nanotube MPL allows the DMFC to be operated with a higher methanol concentration, and thereby increases the fuel cell system energy density.  相似文献   

3.
In a fuel cell of low temperature, especially a direct methanol fuel cell (DMFC), fuel crossover phenomenon plays a significant role not only in its performance evaluation and analysis, but also in the optimum control under various operating conditions. A quantitative prediction of the fuel crossover flux thus becomes essential. Generally speaking, the theoretical approaches to the issue will be dramatically complex and less practical. On the other hand, experimental schemes are time-consuming and less capable of further analysis and applications. Consequently, a semi-empirical model that incorporates dominant physical parameters and operating variables is proposed in this paper to adequately evaluate the phenomenon of fuel crossover fluxes. It is stated analytically in the form of an algebraic function, in which the fuel concentration, the current density, and the temperature of the fuel cell are considered. It is therefore more suitable for a variety of in-situ applications. In the proposed model, the methanol concentration gradient in the anode backing layer, the anode catalyst layer, and the membrane are analyzed. The transfer behavior of methanol is modeled on the basis of diffusion and electro-osmosis mechanisms. By means of the proposed model, one can obtain a better prediction and a clearer picture of the effects of operating variables and physical parameters on methanol crossover fluxes.  相似文献   

4.
The regulation of mass transport through anode diffusion layer is one of the major issue of direct methanol fuel cell. In fact it is critical to maintain an adequate methanol concentration in the anode electrode such that both the rate of methanol crossover and the mass transport loss can be minimized. In the present work the effect of anode micro-porous layer on system operation is investigated both experimentally and theoretically. The developed 2D two-phase isothermal model is validated with respect to three different typologies of measure at the same time, increasing results reliability. Model simulations highlight that anode micro-porous layer can cause an inversion of water diffusion flux through the membrane and enhances methanol gas diffusion mechanism, reducing methanol crossover. Finally the developed model is used as a tool to design an optimized anode diffusion layer.  相似文献   

5.
A design of experiments (DOEs) coupled with a mathematical model was used to quantify the factors affecting methanol crossover in a direct methanol fuel cell (DMFC). The design of experiments examined the effects of temperature, cathode stoichiometry, anode methanol flow rate, clamping force, anode catalyst loading, cathode catalyst loading (CCL), and membrane thickness as a function of current and it also considered the interaction between any two of these factors. The analysis showed that significant factors affecting methanol crossover were temperature, anode catalyst layer thickness, and methanol concentration. The analysis also showed how these variables influence the total methanol crossover in different ways due to the effects on diffusion of methanol through the membrane, electroosmotic drag, and reaction rate of methanol at the anode and cathode. For example, as expected analysis showed that diffusion was significantly affected by the anode and cathode interfacial concentration, by the thickness of the anode catalyst layer and membrane, and by the diffusion coefficient in the membrane. Less obvious was the decrease in methanol crossover at low cathode flow rates were due to the formation of a methanol film at the membrane/cathode catalyst layer interface. The relative proportions of diffusion and electroosmotic drag in the membrane changed significantly with the cell current of the cell.  相似文献   

6.
建立了直接甲醇燃料电池垂直流道方向电池单元的二维稳态数学模型,考虑了电化学动力学、多组分传递和甲醇渗透影响.计算了流道布置密度、扩散层、催化层和质子交换膜等组件尺度对电池内物料传质特性、化学反应组织和电池输出性能的影响.研究发现,增加流道布置密度、增加催化层厚度能有效提高电极反应均匀性和电池性能.其中催化层和质子膜的厚度影响最为显著,在该文研究范围内分别可提高电池的平均电流密度131.0%和17.8%.而扩散层和质子交换膜厚度都存在一个最佳值,需要与以上流场板设计尺寸和膜电极尺寸匹配.  相似文献   

7.
We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.  相似文献   

8.
A systematic method for modeling direct methanol fuel cells, with a focus on the anode side of the system, is advanced for the purpose of quantifying the methanol crossover phenomenon and predicting the concentration of methanol in the anode catalyst layer of a direct methanol fuel cell. The model accounts for fundamental mass transfer phenomena at steady state, including convective transport in the anode flow channel, as well as diffusion and electro-osmotic drag transport across the polymer electrolyte membrane. Experimental measurements of methanol crossover current density are used to identify five modeling parameters according to a systematic parameter estimation methodology. A validation study shows that the model matches the experimental data well, and the usefulness of the model is illustrated through the analysis of effects such as the choice fuel flow rate in the anode flow channel and the presence of carbon-dioxide bubbles.  相似文献   

9.
An algebraic model of the membrane electrode assembly of the direct methanol fuel cell is developed, which considers the simultaneous liquid water and methanol crossover effects, and the associated electrochemical reactions. The respective anodic and cathodic polarization curves can be predicted using this model. Methanol concentration profile and flux are correlated explicitly with the operating conditions and water transport rate. The cathode mixed potential effect induced by the methanol crossover is included and the subsequent cell voltage loss is identified. Water crossover is influenced by the capillary pressure equilibrium and hydrophobic property within the cathode gas diffusion layer. The model can be used to evaluate the cell performance at various working parameters such as membrane thickness, methanol feed concentration, and hydrophobicity of the cathode gas diffuser.  相似文献   

10.
Passive direct methanol fuel cells (DMFCs) are promising energy sources for portable electronic devices. Different from DMFCs with active fuel feeding systems, passive DMFCs with nearly stagnant fuel and air tend to bear comparatively less power densities. A steady state, one-dimensional, multi-component and thermal model is described and applied to simulate the operation of a passive direct methanol fuel cell. The model takes into consideration the thermal and mass transfer effects, along with the electrochemical reactions occurring in the passive DMFC. The model can be used to predict the methanol, oxygen and water concentration profiles in the anode, cathode and membrane as well as to estimate the methanol and water crossover and the temperature profile across the cell. Polarization curves are numerically simulated and successfully compared with experiments for different methanol feed concentrations. The model predicts with accuracy the influence of the methanol feed concentration on the cell performance and the correct trends of the current density and methanol feed concentration, on methanol and water crossover. The model is rapidly implemented and is therefore suitable for inclusion in real-time system level DMFC calculations. Due to its simplicity the model can be used to help seek for possibilities of optimizing the cell performance of a passive DMFC by studying impacts from variations of the design parameters such as membrane thickness, catalyst loading, diffusion layers type and thicknesses.  相似文献   

11.
This research proposes a model that predicts the effect of the anode diffusion layer and membrane properties on the electrochemical performance and methanol crossover of a direct methanol fuel cell (DMFC) membrane electrode assembly (MEA). It is an easily extensible, lumped DMFC model. Parameters used in this design model are experimentally obtainable, and some of the parameters are indicative of material characteristics. The quantification of these material parameters builds up a material database. Model parameters for various membranes and diffusion layers are determined by using various techniques such as polarization, mass balance, electrochemical impedance spectroscopy (EIS), and interpretation of the response of the cell to step changes in current. Since the investigation techniques cover different response times of the DMFC, processes in the cell such as transport, reaction and charge processes can be investigated separately. Properties of single layers of the MEA are systematically varied, and subsequent analysis enables identification of the influence of the layer's properties on the electrochemical performance and methanol crossover. Finally, a case study indicates that the use of a membrane with lower methanol diffusivity and a thicker anode micro-porous layer (MPL) yields MEAs with lower methanol crossover but similar power density.  相似文献   

12.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Use of highly concentrated methanol fuel is required for direct methanol fuel cells (DMFCs) to compete with the energy density of Li-ion batteries. Because one mole of H2O is needed to oxidize one mole of methanol (CH3OH) in the anode, low water crossover to the cathode or even water back flow from the cathode into the anode is a prerequisite for using highly concentrated methanol. It has previously been demonstrated that low or negative water crossover can be realized by the incorporation of a low-α membrane electrode assembly (MEA), which is essentially an MEA designed for optimal water management, using, e.g. hydrophobic anode and cathode microporous layers (aMPL and cMPL). In this paper we extend the low-α MEA concept to include an anode transport barrier (aTB) between the backing layer and hydrophobic aMPL. The main role of the aTB is to act as a barrier to CH3OH and H2O diffusion between a water-rich anode catalyst layer (aCL) and a methanol-rich fuel feed. The primary role of the hydrophobic aMPL in this MEA is to facilitate a low (or negative) water crossover to the cathode. Using a previously developed 1D, two-phase DMFC model, we show that this novel design yields a cell with low methanol crossover (i.e. high fuel efficiency, ∼80%, at a typical operating current density of ∼80-90% of the cell limiting current density), while directly feeding high concentration methanol fuel into the anode. The physics of how the aTB and aMPL work together to accomplish this is fully elucidated. We further show that a thicker, more hydrophilic, more permeable aTB, and thicker, more hydrophobic, and less permeable aMPL are most effective in accomplishing low CH3OH and H2O crossover.  相似文献   

14.
A three-dimensional (3D), two-phase, isothermal model of direct methanol fuel cells (DMFCs) was employed to investigate effects of electron transport through the backing layer and the land in bipolar plates. It was found that the electronic resistance of the backing layer, affected by backing layer electronic conductivity, backing layer thickness and flow channel width, played a relatively important role in determining the current density distribution and cell performance. In order to ignore the electron transport effect on the average current density, the minimum electronic conductivity of the backing layer has to be 1000 S m−1, with the relative error in the average current density less than 5%, under the given conditions.  相似文献   

15.
唐蜜  叶强 《可再生能源》2012,(7):111-116
空气抽吸式直接甲醇燃料电池不仅具有被动式燃料电池的优点,同时又便于将其串联成电堆提高输出电压。建立以阴极为管道抽吸式结构的直接甲醇燃料电池的三维、两相、非等温稳态数值模型,研究了质子交换膜性能、供给甲醇浓度以及电堆规模对电池性能及燃料利用率的影响。对于保温较好的大电堆,采用低甲醇穿透的改性质子交换膜能同时提升燃料利用率和比功率;此类电堆若采用穿透率低的改性膜,则2 mol/L的甲醇浓度就能保证电池在较大的电流密度区间内维持较高的功率与效率。作为影响电池运行温度的重要因素,电堆规模的大小将直接影响质子交换膜种类与甲醇浓度等关键参数的设计与选择。  相似文献   

16.
Methanol crossover is a serious problem in a direct methanol fuel cell (DMFC), which causes significant voltage loss and waste of fuel. Due to methanol crossover, most DMFCs must operate on a fuel with a very low methanol concentration; yet very low methanol concentration also causes a poor cell performance. Thus, it is very important to find the optimal operating conditions of methanol concentration and other operating parameters. In this research, methanol crossover rate in a DMFC is determined by measuring the carbon dioxide concentration at the cathode exit in real time. By measuring methanol crossover and cell performances at different inlet methanol concentrations and various operating conditions three types of characteristics are identified in the relationships between methanol crossover and cell current density. Further analysis of these relationships between methanol crossover and cell performances reveals the optimal methanol concentration and other operating parameters, at which the cell reaches optimal performance without incurring excessive methanol crossover. Furthermore, transient peaks of methanol crossover have been identified when the cell voltage suddenly changes. Analyses of these peaks show that they are caused by the hysteresis of methanol concentration at the interface between the anode catalyst layer and the membrane.  相似文献   

17.
Direct methanol fuel cells have the potential to power future microelectronic and portable electronic devices because of their high energy density. One of the major obstacles that currently prevent the widespread applications of direct methanol fuel cells is the methanol crossover through the polymer‐electrolyte membrane. Methanol crossover is closely related to several factors including membrane structure and morphology, membrane thickness, and fuel cell operating conditions such as temperature, pressure, and methanol feed concentration. This work presents a comprehensive overview of the state‐of‐the‐art technology for the most important factors, affecting methanol crossover in direct methanol fuel cells. In addition, the current and future directions of the research and development activities, aiming to reduce the methanol crossover are reviewed and discussed in order to improve the performance of direct methanol fuel cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Direct methanol fuel cells (DMFCs) have significant potential to become a leading technology for energy conversion in a variety of applications. However, problems, such as methanol crossover reduce the efficiency and open circuit voltage of the cells. The novel design of flowing electrolyte-direct methanol fuel cells (FE-DMFCs) addresses this issue. Methanol molecules are effectively removed from the membrane electrode assembly (MEA) by the flowing electrolyte, and the unused fuel can be utilized externally.In this paper, a general 3D numerical computational fluid dynamics (CFD) model is established to simulate methanol crossover by convection–diffusion in the FE-DMFC. Illustrations of methanol concentration distribution and methanol molar flux densities are presented, and the performance is compared to conventional DMFCs. The results indicate that methanol crossover can be reduced significantly. A parameter study is performed where the influences of anode fuel feed concentration, electrolyte channel thickness and electrolyte volumetric flow rate on methanol crossover are evaluated. In addition, effects of various electrolyte channel orientations are determined. According to the simulations, counter flow is the superior choice of channel orientations to minimize crossover.  相似文献   

19.
The methanol barrier layer adopted for high-concentration direct methanol fuel cells (HC-DMFCs) increases water transport resistance, and makes water management in HC-DMFCs more challenging and critical than that in the conventional direct methanol fuel cell (DMFC) without a methanol barrier layer. In the semi-passive HC-DMFC used in this work, oxygen was actively supplied to the cathode side while various concentrated methanol solutions, 4 M, 8 M, 16 M, and neat methanol, were passively supplied from the anode fuel reservoir. The effects of the cathode relative humidity, cathode pressure, and oxygen flow rate on the water crossover coefficient, fuel efficiency, and overall performance of the fuel cell were studied. Results showed that electrolyte membrane resistance, which was determined by its water content, was the predominant factor that determined the performance of a HC-DMFC, especially at a high current density. A negative water crossover coefficient, which indicated that water flowed back from the cathode through the electrolyte membrane to the anode, was measured when the methanol concentration was 8 M or higher. The back flow of water from the cathode is a very important water supply source to hydrate the electrolyte membrane. The water crossover coefficient was decreased by increasing the cathode relative humidity and back pressure. Water flooding at the cathode was not severe in the HC-DMFC, and a low oxygen flow rate was preferred to decrease water loss and yield a better performance. The peak power density generated from the HC-DMFC fed with 16 M methanol solution was 75.9 mW cm−2 at 70 °C.  相似文献   

20.
In this work, an anode flow field that allows a direct methanol fuel cell (DMFC) to operate with highly concentrated methanol is developed and tested. The basic idea of this flow field design is to vaporize methanol solution in the flow field by utilizing the heat generated from the fuel cell so that the methanol concentration in the anode catalyst layer can be controlled to an appropriate level. The flow field is composed of two parallel flow channel plates, separated with a gap. The upper plate with a grooved serpentine flow channel is to vaporize a highly concentrated methanol solution to ensure the fuel to be completely vaporized before it enters the gap, while the lower plate, perforated to form a serpentine flow channel and located between the gap and the membrane electrode assembly (MEA), is to uniformly distribute the fuel onto the anode surface of the MEA. The test results show that this unique flow field design enables the DMFC operating with 16.0-M methanol to yield a power output similar to that with the conventional flow field design with 2.0-M methanol, significantly increasing the specific energy of the DMFC system. Finally, the effects of methanol solution flow rates and operating temperature on cell performance are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号