首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim DW  Hwang IS  Kwon SJ  Kang HY  Park KS  Choi YJ  Choi KJ  Park JG 《Nano letters》2007,7(10):3041-3045
Novel SnO(2)-In(2)O(3) heterostructured nanowires were produced via a thermal evaporation method, and their possible nucleation/growth mechanism is proposed. We found that the electronic conductivity of the individual SnO(2)-In(2)O(3) nanowires was 2 orders of magnitude better than that of the pure SnO(2) nanowires, due to the formation of Sn-doped In(2)O(3) caused by the incorporation of Sn into the In(2)O(3) lattice during the nucleation and growth of the In(2)O(3) shell nanostructures. This provides the SnO(2)-In(2)O(3) nanowires with an outstanding lithium storage capacity, making them suitable for promising Li ion battery electrodes.  相似文献   

2.
Qin L  Xu J  Dong X  Pan Q  Cheng Z  Xiang Q  Li F 《Nanotechnology》2008,19(18):185705
Square-shaped single-crystalline SnO(2) nanowires and their sphere-like hierarchical structures were synthesized successfully with a template-free hydrothermal approach. It was found that an intermediate phase-Na(2)Sn(OH)(6)-is first produced because it is slow to dissolve in ethanol/water media. The intermediate phase gradually decomposes and converts into SnO(2) at temperatures higher than 200?°C. The reaction temperature also affects the microstructure of SnO(2) nanomaterials. Uniform square-shaped SnO(2) nanowires, which form sphere-like hierarchical structures in 100% structure yield, can be produced at 285?°C on a large scale. The diameter of the nanowires shows a decrease accompanying the increase of the reaction temperature. The temperature effect could be a result of the faster and oriented growth of SnO(2) nanowires along their [Formula: see text] direction at higher temperature. Chemical sensors constructed with square-shaped SnO(2) nanowires exhibit excellent stability, good sensitivity and selectivity, as well as a quick response and short recovery times under exposure to acetone gas in practical applications.  相似文献   

3.
Bi2O3-core/SnO2-shell nanowires have been prepared by using a two-step process: thermal evaporation of Bi2O3 powders and sputtering of SnO2. The crystalline nature of the Bi2O3-core/SnO2-shell nanowires has been revealed by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). TEM analysis and X-ray diffraction (XRD) results indicate that the Bi2O3-core/SnO2-shell nanowires consist of pure tetragonal alpha-Bi2O3-phase momocrystalline cores and tetragonal SnO2-phase polycrystalline shells. The photoluminescence (PL) measurements show that Bi2O3 nanowires have a broad emission band centered at around 560 nm in the yellow-green region. On the other hand, the Bi2O3-core/SnO2-shell coaxial nanowires with the sputtering times of 4 and 8 min have a blue emission band centered at around 450 nm. In contrast, those with a sputtering time of 10 min have a broad emission band centered at approximately 550 nm again. The origin of this yellow-green emission from the core/shell nanowires, however, quite differs from that from Bi2O3 nanowires, i.e., it is not from the Bi2O3 cores but from the SnO2 shells.  相似文献   

4.
Sn doped GeO(2) nanowires and microwires have been grown by an evaporation-deposition method, using a mixture of Ge and SnO(2) powders as precursors. Comparison with undoped GeO(2) nanowires grown by the same method shows that the presence of Sn prevents the formation of sharp bends, which makes the wires more suitable for waveguiding applications. Incorporation of about 0.5?at.% of Sn into the wires influences their morphology and gives rise to wires showing two different cross-sectional dimensions along the growth axis. Sn does not influence the luminescence spectra in the visible range but causes the appearance of emission bands in the near-infrared range. The waveguiding behavior of the Sn doped wires for green and red laser light has been demonstrated.  相似文献   

5.
Park KS  Choi YJ  Kang JG  Sung YM  Park JG 《Nanotechnology》2011,22(28):285712
High quality single-crystalline indium tin oxide (ITO) nanowires with controlled Sn contents of up to 32.5 at.% were successfully synthesized via a thermal metal co-evaporation method, based on a vapor-liquid-solid growth mode, at a substrate temperature of as low as 540?°C. The high solubility of Sn in the nanowires was explained with the existence of Sn(2+) ions along with Sn(4+) ions: the coexistence of Sn(2+) and Sn(4+) ions facilitated their high substitutional incorporation into the In(2)O(3) lattice by relaxing structural and electrical disturbances due to the differences in ionic radii and electrical charges between Sn and In(3+) ions. It was revealed that, while the lattice parameter of the ITO nanowires had a minimum value at a Sn content of 6.3 at.%, the electrical resistivity had a minimum value of about 10(-3) Ω cm at a Sn content of 14 at.%. These structural and electrical behaviors were explained by variation in the relative and total amounts of the two species, Sn(2+) and Sn(4+).  相似文献   

6.
采用溶液法以SnCl4.5H2O和葡萄糖为原料合成了颗粒尺寸为几个纳米的超细Sn及SnO2颗粒分布于无定形碳基体的复合材料,并在溶液过程中引入少量石墨。采用XRD、SEM和TEM等材料结构分析方法和恒电流充放电等电化学测试方法分析研究了前驱体的煅烧温度和石墨的引入对获得产物的结构及其作为锂离子电池负极材料的电化学性能的影响。研究结果表明,在500~700℃的煅烧温度下获得的Sn/C及含少量SnO2的Sn/SnO2/C复合材料,由于其中的Sn及SnO2的超细纳米尺寸及碳基体的缓冲有效减小了Sn在脱嵌锂过程中的应变和粉化,使材料具有良好的循环性能。石墨的引入有效提高了复合材料的容量和循环稳定性。经500℃煅烧的复合电极材料相对于其它材料具有更高的容量,其首次可逆容量达520mAh/g,经初始几个循环后,容量趋于稳定,经100次循环后,容量保持在350mAh/g。  相似文献   

7.
多元醇方法制备SnO2包覆碳纳米管复合材料   总被引:1,自引:0,他引:1  
本文采用SnC2O4.2H2O为Sn源和乙二醇(ethylene glycol,EG)为反应介质的多元醇法,制备得到SnO2包覆多壁碳纳米管复合材料(SnO2/MWNTs),其中SnO2是通过EG中溶解的O2氧化Sn2+反应生成的.没有加入MWNTs的情况下,SnC2O4.2H2O的水解反应生成Sn6O4(OH)4,SnC2O4.2H2O与EG之间的聚合反应生成聚羟基乙酸锡,由于水解反应降低了EG中Sn2+的浓度,使得聚羟基乙酸锡产量较低.加入MWNTs后,仅有少量聚羟基乙酸锡生成,且没有Sn6O4(OH)4生成,主要产物为包覆在MWNTs表面的SnO2.这是由于SnO2在EG中的溶解度极低,随O2氧化Sn2+反应进行,EG中的Sn2+浓度不断降低,Sn6O4(OH)4的溶解结晶平衡不断向溶解的方向进行,并最终转化为SnO2.以上对多元醇法制备SnO2/MWNTs合成机理的理解,将有助于采用类似的方法设计合理条件制备得到其他种类金属氧化物包覆碳纳米管的复合材料.  相似文献   

8.
Nanocrystalline Sn1-xInxO2 (0 < or = x < or = 0.2) has been successfully prepared by a solution chemical route. High-resolution transmission electron microscopy studies show that the average grain size of Sn0.8In0.2O2 heated at 310 degrees C, 500 degrees C, and 800 degrees C for 12 h is about 3-4 nm, 5-6 nm, and 7-10 nm, respectively. The corresponding values for pure SnO2 are 3-4 nm, 7-10 nm, and 50-90 nm, respectively. Powder X-ray diffraction and electron diffraction studies confirm the existence of solid solution only in the nanocrystalline state (the average particle size is in the range of 5-10 nm) with the solubility limited to 20% of In2O3. Indium ions stabilize the nanocrystalline nature of Sn1-xInxO2 (0 < or = x < or = 0.2) and prevent the grain growth by entering the SnO2 lattice. The thermal characteristics of nanocrystalline Sn1-xInxO2 (0 < or = x < or = 0.2) investigated by thermogravimetric (TG) and differential thermal analysis (DTA) show that the solid solution decomposes at 820 degrees C into SnO2 and In2O3, which is accompanied by a rapid crystal growth. The electrical conductivity and activation energy of Sn1-xInxO2 (0 < or = x < or = 0.2) undergo significant changes when the average grain size is less than or equal to 2 x the Debye length, LD.  相似文献   

9.
Kim S  Lim T  Ju S 《Nanotechnology》2011,22(30):305704
One-dimensional SnO(2) nanomaterials with wide bandgap characteristics are attractive for flexible and/or transparent displays and high-performance nano-electronics. In this study, the crystallinity of SnO(2) nanowires was regulated by controlling their growth temperatures. Moreover, the correlation of the crystallinity of nanowires with optical and electrical characteristics was analyzed. When SnO(2) nanowires were grown at temperatures below 900?°C, they showed various growth directions and abnormal discontinuity in their crystal structures. On the other hand, most nanowires grown at 950?°C exhibited a regular growth trend in the direction of [100]. In addition, the low temperature photoluminescence measurement revealed that the higher growth temperatures of nanowires gradually decreased the 500 nm peak rather than the 620 nm peak. The former peak is derived from the surface defect related to the shallow energy level and affects nanowire surface states. Owing to crystallinity and defects, the threshold voltage range (maximum-minimum) of SnO(2) nanowire transistors was 1.5 V at 850?°C, 1.1 V at 900?°C, and 0.5 V at 950?°C, with dispersion characteristics dramatically decreased. This study successfully demonstrated the effects of nanowire crystallinity on optical and electrical characteristics. It also suggested that the optical and electrical characteristics of nanowire transistors could be regulated by controlling their growth temperatures in the course of producing SnO(2) nanowires.  相似文献   

10.
In this paper, a facile method was presented to synthesize tin dioxide (SnO2) nanowires by solvent-free method using SnCl2 x 2H2O as precursor and mesoporous silica SBA-15 as the hard template. No solvent was used in the processing. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and N2 adsorption/desorption isotherms. The results indicated that SnO2 nanowires fabricated by this method have a diameter of about 8 nm and a relatively high surface area 73.0 m2/g. The gas sensing properties of SnO2 nanowires were measured. The response and recovery time of this sensor were 6 s and 12 s, respectively. With the concentration of toluene increasing, the response of the sensor doubled increase. Compared with bulk SnO2, SnO2 nanowires showed much higher response to toluene.  相似文献   

11.
Choi SW  Jung SH  Kim SS 《Nanotechnology》2011,22(22):225501
γ-ray radiolysis is applied to synthesizing Pd nanodots on networked SnO(2) nanowires. The growth behavior of Pd nanodots is systematically investigated as a function of the precursor concentration, illumination intensity, and exposure time of the γ-rays. These factors greatly influence the growth behavior of the Pd nanodots. Selectively grown networked SnO(2) nanowires are uniformly functionalized with Pd nanodots by the radiolysis process. The NO(2) sensing characteristics of the Pd-functionalized SnO(2) nanowires are compared with those of bare SnO(2) nanowires. The results indicate that γ-ray radiolysis is an attractive means of functionalizing the surface of oxide nanowires with catalytic Pd nanodots. Moreover, the Pd-functionalization greatly enhances the sensitivity and response time in SnO(2) nanowire-based gas sensors.  相似文献   

12.
The interactions between In-Sn solders and an electroless Ni-P deposit within the multilayer combinations comprised of In-Sn/electroless Ni-P/Al were investigated with the aid of heat treatments at various temperatures and durations. The main reaction product was identified with X-ray diffractometry (XRD) as In3Ni2 regardless of the In-contents of the In-Sn solders. The formation of this In3Ni2 compound occurred through the diffusion of Ni towards the In-Sn solder. The intermetallic compound layer achieved its maximum thickness within 100 h upon heat treatment at 60 C; the thickness of the compound layer did not increase upon extending heat treatment. Sn tended to dissolve in the In3Ni2 compound.  相似文献   

13.
ZnO nanowires were grown onto SnO2 film coated on Si substrate using a vapor transport method. Zn vapor was found to play important roles in reducing SnO2 and in being oxidized as a ZnO layer. The growth mechanism of ZnO nanowires was revealed to be a two-step process of Zn-SnO2 redox reaction and Sn catalyzed V-L-S (vapor-liquid-solid) growth; initially, Zn vapor atoms arriving at the SnO2 surface reduce the SnO2 to Sn and O atoms and diffuse into the SnO2 layer to form a ZnO layer. The reduced Sn atoms diffuse out of the SnO2 layer and are agglomerated to form Sn liquid droplets. Then, the Sn droplets on the surface of ZnO layer serve as a catalyst for the catalytic V-L-S growth of ZnO nanowires.  相似文献   

14.
A noncatalytic and template-free vapor transport process was developed to make possible simultaneous growth of single-crystalline tin nanowires, nanosquares, nanodisks, and polycrystalline nanoparticles. The formation of such a rich variety of morphologies in a single growth experiment can be attributed to variations in the growth rate among different crystallographic planes when employing the vapor-solid growth mechanism. Structural characterization with high-resolution transmission electron microscopy reveals a preferential growth direction of [100] in Sn nanowires, nanosquares, and nanodisks. Shape-dependent superconducting properties are observed. These four types of Sn nanostructures all show typical diamagnetic behavior in magnetization measurements, with the three anisotropically shaped nanostructures (nanowires, nanosquares, and nanodisks) showing one order of magnitude enhancement in the working magnetic field ranges for superconductivity, compared to bulk Sn and Sn nanoparticles. The magnetic field range is broadest for nanowires, followed by nanodisks, nanosquares, and nanoparticles.  相似文献   

15.
One-dimensional (1-D) nanostructures such as tubes, rods, wires, and belts have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. Characterizing the mechanical properties of nanostructure is of great importance for their applications in electronics, optoelectronics, sensors, actuators. Wide-bandgap SnO2 semiconducting material (Eg = 3.6 eV at room temperature) is one of the attractive candidates for optoelectronic devices operating at room temperature, gas sensors, and transparent conducting electrodes. The synthesis and gas sensing properties of semiconducting SnO2 nanomaterials have became one of important research issues since the first synthesis of SnO2 nanobelts. Considering the important application of SnO2 in sensors, these structures are not only ideal systems for fundamental understanding at the nanoscale level, but they also have potential applications as nanoscale sensors, resonator, and transducers. The structured SnO2 nanorods have been grown on silicon substrates with Au catalytic layer by thermal evporation process over 800 degrees C. The resulting sample is characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The morphology and structural properties of SnO2 nanowires were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The mean diameter of the SnO2 nanorods grown on Au coated silicon (100) substrate is approximately 80 nm. In addition, X-ray diffraction measurements show that SnO2 nanorods have a rutile structure. The formation of SnO2 nanowires has been attributed to the vapor-liquid-solid (VLS) growth mechanisms depending on the processing conditions. We investigated the growth behavior of the SnO2 nanowires by variation of the growth conditions such as gas partial pressure and temperature.  相似文献   

16.
Luo LB  Liang FX  Jie JS 《Nanotechnology》2011,22(48):485701
We report the rational synthesis of one-dimensional SnO(2) nanowires (SnO(2)NWs) via a Sn-catalyzed vapor-liquid-solid (VLS) growth mechanism, in which Sn nanoparticles can direct the oriented growth of SnO(2)NWs at high temperature. I-V measurement of a field effect transistor made of individual SnO(2)NWs exhibits typical n-type semiconducting characteristics with an electron mobility and concentration of 14.36?cm(2)?V( - 1)?s( - 1) and 1.145 × 10(17)?cm( - 3), respectively. The SnO(2)NW-based photodetector shows a high sensitivity to UV light radiation, and a fast light response speed of millisecond rise time/fall time with excellent stability and reproducibility, whereas it is nearly blind to illumination with wavelengths in the visible range. Detailed reasons to account for the detection selectivity and rapid response speed are proposed. The generality of the above results suggests that our SnO(2)NW photodetectors have potential application in nanoscaled optoelectronic devices.  相似文献   

17.
SnO2 nanoparticles were supported on ball-milled graphite (BMG) or carbon nanotubes (CNTs) using a chemical reduction method with ethylene glycol, and the electrochemical properties of the nanocomposites were evaluated as anode active materials of lithium-ion batteries. The BMG and CNTs contributed to an increase in both the capacity enhancement and cyclic stability compared to that of commercial graphite. In particular, the mixture electrode of SnO2/BMG:SnO2/CNT = 3:1 (in weight ratio) showed higher performance in the reversible capacity and cyclic stability than did the SnO2/BMG and SnO2/CNT electrodes. This might be resulted from the network formation for excellent electronic path by CNT distributed on SnO2/BMG composites.  相似文献   

18.
以Sn为原料,采用磁控溅射及热蒸发法制得SnO2纳米线,用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、能量弥散X射线谱(EDS)、傅氏转换红外线光谱分析(FTIR)、拉曼光谱分析(Raman)等测试手段对纳米结构进行表征,结果表明,合成的二氧化锡纳米结构具有金红石结构,二氧化锡纳米材料的生长机制遵循气一液一固生长机制,生长过程中的温度和退火时间对二氧化锡纳米结构的形貌起着极其重要的作用,可以通过这些因素对二氧化锡纳米材料实行可控生长。  相似文献   

19.
Single-crystalline Zn2SnO4 nanowires were successfully synthesized on a photoresist-coated Si substrate using a facile chemical vapor deposition method. The growth of the nanowires followed a self-catalytic vapor-liquid-solid process. During annealing, the photoresist was carbonized into a complex glassy and graphite carbon structure. The immiscibility between the carbon layer and the in-situ formed Zn2SnO4 was a prime factor in the formation of the one-dimensional Zn2SnO4 nanowires. A broad blue-red emission band centered at 490.4 nm was observed in the photoluminescence spectrum of these nanowires, and it was related to the oxygen vacancies in these nanowires.  相似文献   

20.
Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical,electrical,and thermophysical applications.Additionally,the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties.In this highlight article,we review our recent progress and understanding in the deliberate induction of imperfections,in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities.The role of catalysts and catalyst-nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored.Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation."Epitaxial defect transfer"process and catalyst-nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis.By inducing and manipulating twin boundaries in the metal catalysts,twin formation and density are controlled in Ge nanowires.The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries.Additionally,metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires.Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth,where the impurity Sn atoms become trapped with the deposition of successive layers,thus giving an extraordinary Sn content (>6 at.%) in Ge nanowires.A larger amount of Sn impingement (>9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号