共查询到20条相似文献,搜索用时 15 毫秒
1.
机器视觉检测滚子表面缺陷 总被引:1,自引:0,他引:1
介绍利用机器视觉检测滚子表面缺陷的实验装置。该装置采用512位SSPD列阵作为摄景器件。藉助专门机械装置实现滚子表面全扫描展开,把获得的二维图象信息送PC/AT微机进行图象处理。文中提出了三种图象处理算法:多段平均法、二次背景处理法和局部算子处理法。用上述算法较好地解决了不同精度滚子的表面缺陷检测。附图16幅,参考文献5篇。 相似文献
2.
3.
《机械科学与技术》2013,(10):1555-1560
针对石英晶片的外观缺陷检测技术的不足,提出一种基于机器视觉开发软件对石英晶片外观缺陷检测方法,对石英晶片生产过程中出现的外观缺陷进行了分析,提出了缺陷检测的流程,建立了基于几何特征的模板定位算法和基于Blob算法的缺陷分析算法,实现了对图像的获取、边缘检测、定位、识别和斑点分析,在C#环境下对其图像处理技术利用机器视觉软件进行了开发,搭建了石英晶片的外观缺陷检测实验平台,通过摄像机实现了石英晶片的外观图像的捕获,利用视觉软件获得石英晶片的外观质量,最后对此系统进行了测试。实验表明:该石英晶片外观缺陷检测方法具有检测速度快、精确度达到99.7%、匹配误差小于0.3等优点,可满足现场使用的要求。 相似文献
4.
在分析钢球表面光学反射特性的基础上,构建了采用球积分光源与0.5×远心镜头组成的钢球表面缺陷图像检测平台,解决了钢球表面成像难度较高的问题.根据钢球表面图像的特征,利用分段线性灰度增强算法和边界跟踪实现了对钢球表面微小缺陷的分割和区域分类,并结合基于灰度共生矩阵的综合熵作为判定钢球表面是否存在缺陷的依据.最后利用矩形相似度与圆形相似度之比、角度等特征实现了缺陷分类器模型的建立,很好地解决了钢球表面缺陷的分类与识别.试验结果表明,该模型对钢球表面5类缺陷的识别率均可达到90%以上,并能很好进行分类,模型在1 600×1 200图像分辨率下,算法耗时小于80 ms,可以满足工业检测对算法实时性的要求. 相似文献
5.
基于机器视觉的表面缺陷检测以无接触、无损伤、自动化程度高及安全可靠等突出优点被广泛应用于各种工业场景中,尤其随着深度学习技术的快速发展,视觉缺陷检测有助于提高产品及装备的智能化水平。综述分析了表面缺陷检测的常用方法、通用数据集、检测结果评价指标和现阶段面临的关键问题。首先,将缺陷检测方法分为传统基于图像处理的缺陷检测、基于传统机器学习模型的缺陷检测及基于深度学习的缺陷检测,并对各种方法进一步细分归类和对比分析,总结了每种方法的优缺点和适用场景;然后,对目前常用的缺陷检测结果评价方法做出了描述,进一步探讨了表面缺陷检测应用在实际工业产品检测过程中关键问题——小样本问题,重点剖析了小样本问题的解决方法和无监督学习在解决这类问题上的优势;最后,从提高缺陷检测方法的工业适用性角度展望了下一步研究方向。 相似文献
6.
为提高对细长产品表面缺陷的检测效率,运用机器视觉技术对细长产品外部轮廓尺寸及表面缺陷状况进行检测.运用机器视觉技术,分析图像传输过程中噪声产生原因及降噪方法;采用canny算法和Simple Blob Dectorte特征点检测方法,提取零件轮廓和色斑轮廓;编写基于机器视觉的表面缺陷检测程序,并通过实验验证了该方法的可... 相似文献
7.
针对中小型企业在焊接缺陷检测领域中存在人工成本高、检测精度低、实时性差等问题,提出了基于机器视觉的焊接缺陷检测系统,在生产线上安装多套图像采集装置。根据现场情况,设计了多套打光方案,实现连锡、焊点偏位、芯线断开等缺陷的高清成像;基于HALCON软件,采用图像定位、图像预处理、图像分割、形态学处理及焊接缺陷识别算法,完成了USB接口缺陷的精确检测,并将结果显示在上位机界面。测试生产线上实际采集的402幅缺陷图像,结果表明,系统成功检出率达86%,基本满足实际生产需要。该检测系统用于中小型企业生产,有利于大幅度提高检测效率和缺陷检测智能化水平,同时降低检测成本。 相似文献
8.
太阳能电池片(Photovoltaic, PV)表面缺陷检测是光伏组件生产中不可或缺的流程。基于机器视觉的自动缺陷检测方法因其高精度、实时性、低成本等优点得到了广泛应用。本文综述了基于机器视觉的太阳能电池片表面缺陷检测方法的研究进展。首先,阐述了太阳能电池片表面成像方式,列举了典型缺陷类型。然后重点分析了基于传统机器视觉算法及基于深度学习算法进行太阳能电池片表面缺陷检测的原理。将传统机器视觉算法分为图像域分析法、变换域分析法进行综述;从无监督学习、有监督学习和弱监督及半监督学习三个方面分别概述了近几年来基于深度学习的太阳能电池片表面缺陷检测的研究现状。对太阳能电池片表面缺陷检测各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点。随后,介绍了9种太阳能电池片表面缺陷图像数据集及缺陷检测性能评价指标。最后,系统总结了太阳能电池片缺陷检测常见的关键问题及其解决方法,对太阳能电池片表面缺陷检测的未来发展趋势进行了展望。 相似文献
9.
10.
纹理表面缺陷检测在机器视觉领域具有意义和挑战性,其历史可以追溯到20世纪中后期,近年来随着深度学习技术的蓬勃发展,纹理表面缺陷检测技术大幅飞跃。直至今日,关于纹理表面缺陷检测的调研和综述仍然很少。在此背景下,本文回顾2017年-2021年间200余篇纹理表面缺陷机器视觉检测论文,对纹理表面缺陷机器视觉检测研究进展进行了及时、全面的调查;分析了纹理表面缺陷检测的发展历史和最新研究进展,原则上将纹理表面缺陷机器视觉检测方法分为传统方法与深度学习方法,并对二者进行了深层次研究分析,特别是深度学习方法;对近期出现的几种纹理表面缺陷机器视觉检测方法主题进行总结的同时,也对这些主题的研究进展进行了综述。最后,对未来的研究趋势进行了展望,以期为后续研究提供指导和启示。 相似文献
11.
实际生产过程中,产品表面会不同程度地留下污渍和印记,这对基于机器视觉的表面缺陷识别带来严重干扰.基于图案统计分析的识别方法速度虽快,但抗干扰能力弱,出现较高的误判率.基于深度学习的人工智能识别方法计算量巨大,速度慢,难以满足生产实际的高速要求.因此介绍一种改进SIFT算法,并给出了相关参数的设置方法和经验公式,通过实际表面缺陷的检测,对比验证了SIFT算法较强的鲁棒性和抗干扰能力,以及相关参数设置方法的正确性和可行性.实验数据表明,SIFT算法在凹陷类和斑点类缺陷的检出率上具有明显优越性,在裂纹类的误检率上也具有较大优势.特别是在有噪声图像干扰情况下,检出率比神经网络提升了20%,误检率降低了3%. 相似文献
12.
13.
《机械制造与自动化》2019,(5)
为了满足织带企业的高效、自动化检测需求,构建了基于PC的织带检测系统。设计织带张力传送机构和基于i MC3041E运动控制卡的运动控制系统;改进边缘提取和傅里叶变换图像算法,研发了实时图像采集系统;并用C#开发了集成图像采集检测和运动控制的人机界面。研究结果表明,系统可实时检测织带缺陷,满足企业实际生产需求。 相似文献
14.
在半导体、PCB、汽车装配、液晶屏、3C、光伏电池、纺织等行业中,产品外观与产品性能有着千丝万缕的联系。表面缺陷检测是阻止残次品流入市场的重要手段。利用机器视觉的技术进行检测效率高、成本低,是未来发展的主要方向。本文综述了近十年来基于机器视觉的表面缺陷检测方法的研究进展。首先给出了缺陷的定义、分类以及缺陷检测的一般步骤;然后重点阐述了使用传统图像处理方式、机器学习、深度学习进行缺陷检测的原理,并比较和分析了优缺点,其中传统图像处理方式分为分割与特征提取两个部分,机器学习包含无监督学习和有监督学习两大类,深度学习主要囊括了检测、分割及分类的大部分主流网络;随后介绍了30种工业缺陷数据集以及性能评价指标;最后指出缺陷检测方法目前存在的问题,对进一步的工作进行了展望。 相似文献
15.
基于机器视觉的陶瓷砖表面缺陷快速检测方法的研究 总被引:3,自引:0,他引:3
为了提高陶瓷砖表面缺陷检测效率,提出了一种基于机器视觉的表面缺陷检测方法。采用了自适应中值滤波算法对表面图像进行预处理,利用形状匹配实现图像之间的对齐,采用Deriche亚像素分割算法实现了陶瓷砖边缘的精确分割,设计局部门限算法实现陶瓷砖表面缺陷图像的提取。实验结果表明:该方法可实现陶瓷砖表面缺陷的快速提取,效果较好。 相似文献
16.
17.
近年来计算机及信息技术飞速发展,并在各个领域得到了广泛应用,极大地促进了社会的发展.数字图像处理技术以其高效准确性,在工业产品缺陷检测中发挥了重要作用.利用该技术可以代替人工检测,极大地提高了工作效率,降低了人工成本,增加了企业收益.因此,研究基于图像处理的LED芯片缺陷检测系统,对比不同LED芯片缺陷类型及传统检测方... 相似文献
18.
在以批量生产方式为特征的汽车、摩托车、内燃机等行业,准确、快速地识别和检测重要零部件关键部位的表面缺陷,直接关系到产品质量,若不及时剔除不合格品,将会带来严重的质量隐患。以汽车发动机连杆为例,在采用了先进的分离大小头的胀断工艺后,其结合面有可能会产生破口,因此,必须进行100%的探测,具体的质量评定标准为: 相似文献
19.
针对蓝莓表面缺陷检测快速、准确的需求,提出一种基于机器视觉和反向传播神经网络的蓝莓表面缺陷检测方法。构建蓝莓表面缺陷图片数据集,通过形态学相加等图像处理技术实现蓝莓图像的背景去除与图像增强,采用最大类间方差阈值方法提取蓝莓表面缺陷。对蓝莓表面缺陷提取外观特征,包括色调分量图像的色调累积频度、纹理特征、几何特征。利用主成分分析优化蓝莓表面缺陷外观特征,构建基于反向传播神经网络的蓝莓表面缺陷检测模型。测试集检测结果表明,采用基于机器视觉和反向传播神经网络的蓝莓表面缺陷检测方法,平均识别率达到92.3%,对腐烂、擦伤、机械损伤、褶皱的识别率均高于83%。 相似文献
20.
提出了一种基于机器视觉的产品表面缺陷快速检测和定位的方法。该方法引用Pearson(皮尔逊)相关系数的概念,通过待检测样本图像和模板图像皮尔逊相关系数阈值可以很好地确定图像中的产品是否有缺陷,再通过待检测图像和模板图像进行差运算得到差影图像,以实现缺陷的定位。实验结果表明本方法与Du-Ming缺陷检测方法相比具有优越性,并且在壁纸表面缺陷检测中得到了较好的效果。 相似文献