首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

2.
采用共沉淀-高温固相法合成单晶LiNi0.83Co0.1Mn0.07O2正极材料。采用XRD,SEM和恒流充放电等测试手段对材料的晶体结构、形貌和电化学性能等进行研究。测试结果表明,材料形成形貌良好的单晶颗粒,Li+/Ni2+离子混排程度较低,材料具有良好的a-NaFeO2层状结构。在2.75~4.3 V下,扣式电池0.1 C首次放电比容量达209.63 mAh/g,库仑效率为91.19%,0.2 C循环100次后容量保持率为100.09%。   相似文献   

3.
通过溶胶-凝胶法制备LiNi0.8Co0.1Mn0.1O2正极材料,研究了烧成温度对材料结构、形貌和电化学性能的影响。采用XRD、SEM及恒流充放电测试对材料性能进行表征。分析结果表明,材料均呈现典型的α-NaFeO2层状结构且阳离子有序度较好。不同烧成温度时材料形貌呈现不规则块状且粒径随着温度的增加而增大; 温度低于780 ℃时,材料结晶性不好,生长不完全; 温度高于800 ℃时,材料团聚现象严重、形貌不规整。烧成温度为800 ℃时材料有较好的电化学性能,在5 C高倍率充放电下,首次放电比容量为147.95 mAh/g,循环200次后,容量保持率为76.71%。   相似文献   

4.
采用原位包覆法制备压电材料K0.5Na0.5NbO3(KNN)表面修饰高镍正极材料LiNi0.83Co0.12Mn0.05O2,并对其进行电化学性能研究。XRD图谱表明,KNN表面修饰样品并未改变高镍正极材料的层状结构。通过XRD结构精修也证实了KNN的存在且本体材料的晶体结构未受影响。EDS面扫描结果表明,KNN已成功地包覆在高镍正极材料的表面。电化学性能测试结果表明,在2.8~4.3 V电压范围内,0.1 C倍率下改性样品KNN@NCM83的初始放电比容量升高;循环100圈后,改性样品仍保持157.8 mA·h/g的放电比容量,容量保持率为82.3%,而原始样品NCM83仅保持133.6 mA·h/g的放电比容量,容量保持率为75.2%。与原始样品相比,KNN@NCM83表现出了更优异的倍率性能,在5 C和10 C倍率下的放电比容量分别为155.6、148.6 mA·h/g,表明KNN能有效提高高镍正极材料的Li+  相似文献   

5.
高镍三元正极材料以其能量密度高的特性成为目前动力型锂离子电池主流正极材料之一,但目前高镍三元材料存在循环稳定性较差、大倍率充放电性能较差等问题,限制了其规模化应用。三元材料的单晶化可以有效降低循环过程中的颗粒间微裂纹产生,结合表面包覆可有效提高高镍三元正极材料的循环稳定性。同时,高价阳离子掺杂可有效提高锂离子传输速率,提高高镍三元材料的倍率充放电性能。本文采用高温固相法制备W6+、Zr4+共掺杂和H3BO3、Al2O3双包覆的高镍单晶LiNi0.83Co0.12Mn0.05O2材料,并探究其电化学性能的变化。在3.0~4.3 V电压范围内,与未掺杂材料相比,W-Zr共掺杂的LiNi0.83Co0.12Mn0.05O2在不同放电倍率下具有更好的电化学性能;采用H3...  相似文献   

6.
基于LiNi0.8Co0.1Mn0.1O2正极材料在高电压下的电化学性能不佳问题,通过简单的共沉淀法得到前驱体Ni0.8Co0.1Mn0.1(OH)2,与适当的Na源、Zr源及Li源球磨后得到改性材料。通过对比Na和Zr单掺杂或共改性来探究改性材料电化学性能的变化。XRD结果表明,掺杂Na和Zr后,所有改性材料的Li间距和过渡金属层间距均扩大,电化学性能测试发现改性后的材料其循环、倍率性能等均得到明显提升。其中Na、Zr共改性的LiNi0.8Co0.1Mn0.1O2(NCM-Na-Zr),其循环和倍率性能得到显著改善,在2.75~4.35 V、1C倍率下循环200次后,仍然有177.4 mAh/g放电比容量和87.7%的容量保持率。   相似文献   

7.
采用共沉淀法、溶胶凝胶法和固相法合成了富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2,并通过XRD、SEM、EDS等对所合成材料的物相结构和微观组织等进行了表征,采用电池测试系统对由合成材料组装的CR2032纽扣式半电池进行电化学性能测试。研究表明,三种合成方法都成功合成了具有层状结构的富锂锰基正极材料,其中共沉淀法制备的样品阳离子混排程度最低,元素分布和颗粒大小均匀,晶界边缘清晰,并且无明显团聚。从电化学性能来看,在2.0~4.8 V的电压范围内,0.1 C倍率下共沉淀法合成样品的首圈放电比容量最高,在充放电循环100圈后,仍保持195.8 mA·h/g的放电比容量,容量保持率为87.3%。相较而言,溶胶凝胶法和固相法制备的样品容量保持率较低,分别为84.5%和83.8%。与溶胶凝胶法和固相法制备样品相比,共沉淀法可有效提高Li1.2Mn0.54Ni0.13Co0.13...  相似文献   

8.
成本低、性能稳定的无钴镍锰正极材料是目前的研究热点。采用共沉淀法制备Ni0.8Mn0.2(OH)2前驱体, 用氨水作为络合剂, 探究了NH3浓度对前驱体Ni0.8Mn0.2(OH)2共沉淀的晶粒生长和形貌的影响, 以及对锂离子电池正极材料LiNi0.8Mn0.2O2的晶体结构和电化学性能的影响。通过X射线衍射仪、扫描电镜、循环伏安测试、交流阻抗和电池充放电测试系统表征材料的结构、形貌和电化学性能。表征结果显示, 在0.1 C, 2.5~4.2 V化成条件下, 初始放电比容量为167 mAh/g, 充放电效率为96%。当氨水用量为45 mL时, 样品具有较优的循环性能, 在1 C倍率下, 2.5~4.2 V的电压测试范围内, 循环100次后, 放电比容量为139 mAh/g, 容量保持率为93.9%。在低倍率充放电条件下样品具有明显优于其他材料的电化学性能。   相似文献   

9.
采用溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2正极材料。探究不同的锂配比、不同的烧结温度对正极材料的形貌和电化学性能的影响。电化学性能测试结果表明:当锂过量13%,烧结温度为800 ℃时电化学性能较优,其首次放电比容量达179.89 mAh/g,0.2 C循环20次后容量保持率为94.72%,且此时材料的电极极化程度最小,晶体结构最稳定,循环可逆性也最好。XRD、TEM的分析结果说明:LiNi0.8Co0.1Mn0.1O2正极材料具有较好的结晶性,且有良好的a-NaFeO2层状结构,做出的材料形貌为不规则块状。   相似文献   

10.
采用共沉淀法+高温固相法,首次在740~820℃制备了一系列LiNi0.8Co0.15Al0.05O2正极材料,探讨温度变化对材料结构性能的影响.通过X射线分析仪、扫描电镜、电化学工作站、电池充放电测试系统表征材料性能.结果显示在780℃烧结出的材料有纯的六方晶相、层状结构优异,在2.75~4.2 V、0.1 C倍率获得188.11 mAh/g,0.5 C循环100次后容量稳定率为88.55 %,高于其他温度制备的材料; 经过不同倍率放电后,780℃烧结出的材料不可逆容量损失远低于其他温度制备的材料.   相似文献   

11.
采用共沉淀法合成镍钴锰氢氧化物前躯体,使其和碳酸锂混合均匀后,高温焙烧合成锂离子正极材料LiNi0.5Mn0.3Co0.2O2,研究了掺杂Al(OH)3对材料循环性能的影响.用X射线衍射和扫描电镜对合成的粉末进行了表征,用电性能测试仪研究了材料的电化学性能.研究发现:温度为850 ℃时焙烧的材料具有最优的电性能,1C电流初始放电比容量达到157.2 mAh/g(2.75~4.2V),循环50次放电比容量保持率为94.8 %,循环100次材料的放电比容量保持率为90.1 %.通过少量掺杂Al(OH)3的电池材料结晶性有所提高,晶型趋于完整,但是材料的放电比容量有所降低,前100次循环掺杂对材料循环稳定性无显著改善效果.   相似文献   

12.
以碳酸锂(Li2CO3)为锂源, 磷酸二氢铵(NH4H2PO4)为磷源, 草酸亚铁(FeC2O4·2H2O)为铁源, 柠檬酸(C6H8O7·H2O)为碳源, 采用固相反应法制备橄榄石晶型磷酸铁锂。利用X射线衍射仪, 扫描电子显微镜, 能谱仪, 比表面积分析仪和电化学测试等设备和方法对磷酸铁锂材料的物相组成、结构、形貌和电化学性能进行表征, 研究煅烧温度和保温时间对磷酸铁锂电化学性能的影响, 并通过添加碳对试样进行包覆改性。结果表明, 在煅烧温度为700℃, 保温时间为12 h条件下制备的磷酸铁锂正极材料的电化学性能良好, 碳包覆能有效改善电极材料的性能。包覆碳后的磷酸铁锂电极材料在0.2C充电电流密度下首次放电比容量可达319.2 mAh·g-1; 在1C充电电流密度下循环100次后, 放电比容量保持在168.1 mAh·g-1。  相似文献   

13.
实验以碳酸钠为钠源,采用溶胶-凝胶法分别合成钠离子正极材料Na0.46Ni0.26Mn0.54O2 和含有部分铁离子的正极材料Na0.46Ni0.13Fe0.13Mn0.54O2.两者均在相同的条件和相同煅烧温度下合成.分别讨论这两种材料结构上的差异和性能上的变化.利用X射线衍射仪观察两种材料的晶体结构、扫描电子显微镜观察两种材料的组织形貌.将合成的材料做成电池,分别进行电化学的测试.结果表明:不添加Fe元素的材料,即S1:Na0.46Ni0.26Mn0.54O2具有层状结构,呈现P2结构、形貌呈现为片束形状态,粒径大小均匀,且电池的电化学性能更佳.而添加了铁元素的材料即S2:Na0.46Ni0.13Fe0.13Mn0.54O2,无论从结构、形貌和电化学性能来比较,都次于P2型结构的Na0.46Ni0.26Mn0.54O2.   相似文献   

14.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

15.
采用溶胶-凝胶法合成前驱体, 再结合高温固相法得到P2型层状结构钠离子电池正极材料Na0.5Ni0.25Mn0.75O2, 并研究该材料的最佳制备条件。研究结果表明, 在空气气氛下900℃煅烧16h制备的材料具有最佳的性能。电镜结果显示结构呈现P2型层状结构、形貌呈现为片状, 粒径大小均匀。电化学性能显示, 1.5~4.2V电压范围内, 在0.1C电流下, 首次放电比容量达到205mAh/g, 首次充放电效率达99.86%, 且循环性能良好, 循环60次后容量达到130mAh/g, 充放电效率为100%, 容量保持率约为65%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号