首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了提升环氧复合材料的沿面闪络性能,并揭示表层陷阱对沿面闪络的影响机制,制备4种环氧/TiO2纳米复合材料,并对其在30 keV电子束下进行了5 min和10 min的表面处理,采用三电极法测试了材料的表面电导,采用表面电位衰减系统提取了材料的表层陷阱特性,并在真空环境中测试了环氧纳米复合材料直流沿面闪络电压。研究结果表明,添加适量的纳米粒子或采用电子束辐照处理,可以有效降低材料表面电导,提高材料的表层深陷阱的能级和密度,并提升环氧复合材料的沿面闪络性能。经过电子束辐照处理10 min后,质量分数为2%的环氧/TiO2纳米复合材料的沿面闪络电压比未经辐照的纯环氧树脂沿面闪络电压提高了27.4%。适当地添加纳米粒子,可以改变纳米粒子界面区的能级和势垒分布,而采用电子束辐照处理,可以在环氧分子链锻形成大量的侧基、端基、自由基,二者均会提高环氧复合材料表层深陷阱能级和密度。随着深陷阱能级的提高,二次电子发射变得更加困难,表层电荷输运受到抑制,表面电导下降,沿面闪络电压上升。因此,电子束辐照处理主要是通过调控表层深陷阱特性来提高环氧纳米复合材料的沿面闪络电压。  相似文献   

2.
在真空环境下采用电子束辐照对环氧微米复合介质试样进行表面处理,测试辐照前后试样的表面电位衰减和表面电导等特性。结果表明:辐照前后的试样均存在深、浅两个表面陷阱中心。随着辐照能量的增大,表面浅陷阱密度逐渐减小,其能级未发生明显变化,表面深陷阱的密度和能级均逐渐增大;电子束辐照在介质中沉积的能量与表面陷阱特性的变化有关,当电子束沉积的能量大于电介质禁带宽度的3倍左右,就会造成电介质电离,导致电介质表面深陷阱能级和密度增加,阻碍载流子在试样表面的迁移,降低了试样的表面电导率。采用电子束辐照调控绝缘介质的表面陷阱特性和表面电导,提高沿面闪络电压,能够为电力设备的可靠运行提供保障。  相似文献   

3.
为了揭示微米TiO2填料对环氧复合材料真空快脉冲作用下的沿面闪络特性的影响,并探讨相关影响因素的作用机理,制备了6种不同填料含量的TiO2/环氧复合材料,测试了各种试样在30 ns(脉冲前沿)/200ns(半高宽)脉冲作用下的真空沿面闪络电压,并测量了介电频谱和热刺激去极化电流(TSDC)。结果显示,TiO2质量分数(wt%)的变化对Ti02/环氧复合材料的闪络电压有显著影响,但两者之间并不是线性关系;随着填料质量分数的增加,复合材料的介电常数和电导率都逐渐增加;所有实验材料都存在深、浅两种不同的陷阱能级,深陷阱电荷量和浅陷阱电荷量随填料质量分数的变化呈现出不同的变化规律。分析认为,Ti02/环氧复合材料的真空快脉冲沿面闪络特性不能由介电常数和电导率等影响因素的变化趋势单独解释,而针对闪络的深浅陷阱共同作用模型可以很好地解释闪络电压的实验结果。同时,根据实验结果对闪络的深浅陷阱共同作用模型进行完善,提出了当填料质量分数较低时,浅陷阱将显著降低材料的闪络强度,而当填料质量分数较高时,深陷阱对闪络强度的增强作用更为明显。  相似文献   

4.
长期以来真空沿面闪络现象一直制约着真空绝缘材料性能的提高,极大地限制了高功率脉冲设备的小型化和实用化进程。该文针对环氧基复合材料引入真空绝缘的背景,研究了脉冲电压作用下,复合材料的表面陷阱状况对其沿面绝缘特性的影响。通过对Simmons等温电流理论的进一步推导,完善了利用表面电位衰减测量材料表层陷阱能量分布的理论和方法,并分析了填料浓度对于材料表层陷阱的影响机制。在已有的二次电子发射雪崩(SEEA)闪络模型基础上,强调了深电子陷阱在沿面闪络过程中的作用,并定性分析了此过程中的物理机制和影响因素。复合材料中的深陷阱对于抑制材料表面的内二次电子发射有一定的作用,通过提高深陷阱的密度可以在一定程度上提高沿面闪络电压。  相似文献   

5.
环氧树脂绝缘子在电场的作用下会发生表面电荷积聚,严重时会发生沿面闪络现象,威胁电力系统和电气设备的安全运行。为此利用CF4/Ar等离子体对纳米SiC进行氟化处理,以改变其在环氧树脂中的界面特性,将含有不同质量分数氟化纳米SiC的环氧复合涂层材料以3种不同厚度涂覆在环氧树脂基体上,对其进行表面电位测试和直流闪络测试。实验结果表明:随着填料在环氧涂层中含量的增加,试样的闪络电压增高,电荷消散速度加快,陷阱能级和密度降低。增加涂层厚度同样可以提高试样的闪络电压,等离子体氟化纳米SiC质量分数为5%的涂层厚度为600μm时,闪络电压较无涂层试样提高了18.7%。涂覆等离子氟化纳米SiC/环氧复合涂层作为便捷有效的方法,在减少电气设备运行故障方面具有广阔的应用前景。  相似文献   

6.
本文制备不同填料含量的核壳结构BNNS@SiO2/环氧复合电介质,研究复合电介质界面区的化学特征与微观形貌,通过热刺激去极化电流法与击穿测试研究环氧复合电介质的陷阱特性与击穿性能。结果表明:BNNS@SiO2具有核壳结构,且包覆的SiO2厚度在纳米级别;BNNS@SiO2表面存在明显化学键合作用,与环氧基体可形成较强的界面区,提升其与环氧基体的相容性。少量BNNS@SiO2可有效提升复合电介质的电气强度,当BNNS@SiO2的质量分数为1%时,复合电介质的电气强度可提升52.3%。当BNNS@SiO2纳米粒子含量较少时,环氧复合电介质中的深陷阱增加,当纳米粒子含量较多时,深陷阱数量有所减少,浅陷阱数量增加。此外,核壳结构BNNS@SiO2/环氧复合电介质的热导率明显提高,有利于高电场下的绝缘散热。通过深陷阱效应与导热性能提升的综合作用,环氧复合电介质的击穿性能得到显著提升。  相似文献   

7.
气-固界面的沿面闪络电压低于同等条件下同种气体的击穿电压,从而制约着特高压电力设备的发展。对固体绝缘材料进行改性可以提高气-固绝缘系统的沿面闪络性能。为此,制备了8种不同的多壁碳纳米管(MWCNTS)掺杂环氧树脂,即掺杂质量分数分别为0%、0.02%、0.05%、0.1%、0.125%、0.15%、0.2%和0.5%的8种试样,并对试样进行了显微形貌、玻璃化转变温度、介电常数、表面粗糙度、电阻率、表面电位衰减特性(SPD)、直流真空沿面闪络特性的测试。试验结果表明:随着掺杂质量分数的提高,环氧复合材料的沿面闪络电压先上升后下降,并且在掺杂质量分数为0.1%时达到极大值,环氧复合材料的闪络电压比纯环氧树脂的提升了23.1%。通过分析发现,掺杂质量分数较低时,沿面闪络电压的上升与陷阱深度的增加及介电常数的下降有关;而掺杂质量分数较高时,沿面闪络的下降与浅陷阱密度的增加及介电常数上升有关。通过分析得到,介电常数会引起电场畸变,陷阱的深度和密度会影响载流子迁移过程,二者均对沿面闪络电压产生影响。  相似文献   

8.
分别采用放电等离子体、离子注入、表面直接氟化的方法对环氧复合绝缘样品进行处理。研究不同处理方法对绝缘材料表面状况及高气压c-C_4F_8/N_2混合气体中的负直流高压下闪络特性的影响。实验结果显示等离子体和离子注入方法对绝缘样品表面改性无法提高样品在高气压c-C_4F_8/N_2混合气体中的沿面闪络电压,并且放电会直接破坏表面结构,导致绝缘失效;采用表面直接氟化处理的环氧绝缘样品,闪络电压有所提高。测量表明,表面氟化引起环氧复合绝缘材料表面电位降低,电位衰减加快,表面陷阱能级下降,陷阱密度随氟化时间加长而增加。通过研究认为,目前放电等离子体和离子注入方法处理绝缘材料表面,在技术上还需要完善。表面直接氟化处理环氧材料表面可以提高其在高气压下闪络特性,但是耐受放电次数的减少将制约它的应用。  相似文献   

9.
沿面闪络严重威胁气体绝缘封闭开关(GIS)的安全运行。文中通过对指形电极沿面闪络装置进行非介入式表面电位测量及仿真,在仿真参数设定下,非介入式测量误差仅为2.42%。利用该实验装置对添加纳米SiO2质量分数为2%的环氧试样进行表面电位测量,升压速率为0.5 kV/5 min。当施加电压不足以引发沿面闪络时,纳米颗粒的添加引起的Maxwell-Wagner界面极化使得表面电位呈现衰减现象。当施加电压接近闪络电压时,表面电位衰减过程出现周期性回升现象,且回升现象出现的频率随施加电压升高而变快,闪络前表面电位衰减过程中的回升现象能够预测闪络的发生。持续性闪络阶段表面电位的幅值波动相较于间歇性闪络要小且相邻闪络间期变短,闪络剧烈。该现象与闪络引起表面灼烧通路更易于发生沿面闪络有关。直流闪络的表面电位测量对闪络预防以及闪络严重性评估具有指导意义。  相似文献   

10.
聚合物纳米复合电介质作为第三代绝缘材料表现出优异的电气特性,其中击穿是纳米复合电介质的关键性能之一。很多研究表明纳米复合电介质的击穿性能明显优于纯聚合物和微米复合电介质材料。针对第一代纳米复合电介质的国内外研究现状,综述了其击穿性能(包括体击穿和沿面闪络特性),讨论了纳米复合电介质击穿特性改善的机理。基于国内外研究现状和本课题组的研究积累,提出了自由体积对聚合物纳米复合电介质击穿的重要影响,指出了纳米粒子对聚合物基体自由体积参数的影响规律;研究了电荷输运微观过程对纳米复合电介质击穿的影响机制,阐述了陷阱参数与体击穿和沿面闪络性能的关系;总结了纳米改性与复合材料体和表面电荷输运参数调控的关联,指出了纳米掺杂同时改善聚合物介质体击穿和沿面闪络特性的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号