首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Isolated perfused rat tail artery preparations were used to investigate the effects of the angiotensin converting enzyme inhibitor enalaprilat on the actions of a series of alpha-adrenoceptor antagonists. The agonist used was phenylephrine. 2. Enalaprilat (1 mumol/L) potentiated the competitive alpha 1-adrenoceptor antagonist actions of phentolamine (10-100 nmol/L) and yohimbine (0.3-3.0 mumol/L) as well as the non-competitive antagonist action of phenoxybenzamine (50-100 pmol/L). 3. The competitive alpha 1-adrenoceptor antagonist action of prazosin (1-10 nmol/L) was not affected by enalaprilat. 4. For the competitive alpha 1-adrenoceptor antagonists, including prazosin, there appeared to be an inverse relationship between antagonist potency and the extent of potentiation by enalaprilat. 5. The results support the hypothesis and angiotensin II modulates vascular smooth muscle alpha 1-adrenoceptor function.  相似文献   

2.
The effects of angiotensin II (AngII), the AngII analogues saralasin--[Sar1, Ala8]AngII, sarmesin--[Sar1Tyr(Me)4]AngII, the nonpeptide AngII receptor antagonists DuP753 (losartan) (for AT1 receptor subtype) and PD123319 (for AT2 receptor subtype), as well as combinations of AngII and each of its analogues and receptor antagonists, administered intracerebroventricularly (ICV), were studied on mice using the acetic acid-induced abdominal constrictions test (acetic acid 1% intraperitoneally, IP). The abdominal constrictions were counted at 5-min intervals for 30 min. AngII at doses of 0.05, 0.1, and 1 microg exerted a dose-dependent antinociceptive effect. Saralasin, sarmesin, losartan, and PD123319 exhibited a dose-dependent effect on nociception: they either increased or decreased it. PD123319 antagonized the antinociceptive effect of AnglI while losartan was ineffective. The importance of AT2 receptor subtype for the nociception reducing effect of AngII is considered.  相似文献   

3.
4.
1. Presynaptic modulation of noradrenaline release in human atrial tissue specimens was investigated under normoxic and anoxic conditions. 2. Noradrenaline release was induced by electrical stimulation and release during experimental intervention (S2) was compared with release during a preceding control stimulation (S1). The results were expressed as the geometric means and 95% confidence intervals of the S2/S1 ratio. 3. The alpha 2-adrenoceptor agonist, UK 14304 (0.1 mumol-1) significantly inhibited noradrenaline release, resulting in a S2/S1 ratio of 0.49 (0.40-0.59), and the a 2-adrenoceptor antagonist, yohimbine (1 mumol l-1) increased noradrenaline release (S2/S1 1.83 [1.43-2.35]) during normoxia. Both compounds were ineffective during anoxia. 4. Adenosine (30 mumol-1) inhibited noradrenaline release with a S2/S1 ratio of 0.54 (0.42-0.66). The adenosine antagonist, 8-phenyltheophylline, alone had no effect during normoxia. During anoxia, neither adenosine nor 8-phenyltheophylline altered noradrenaline release. 5. The beta 2-adrenoceptor agonist, terbutaline (1 mumol l-1) increased (1.53 [1.14-2.01]) and the beta-adrenoceptor antagonist, pindolol (1 mumol l-1) suppressed noradrenaline release (0.62 [0.49-0.79]) under normoxic conditions. During anoxia, pindolol significantly inhibited noradrenaline release with a S2/S1 ratio of 0.66 (0.51-0.85), whereas terbutaline did not influence noradrenaline release. 6. Angiotensin II (0.1 mumol l-1 enhanced noradrenaline release resulting in a S2/S1 ratio of 1.44 (1.34-1.54), while the angiotensin II antagonist, losartan (1 mumol l-1) had no effect on noradrenaline release during normoxia. Conversely, angiotensin II did not increase noradrenaline release and losartan significantly inhibited noradrenaline release to a S2/S1 ratio of 0.60 (0.46-0.77) during anoxia. 7. In conclusion, human cardiac tissue possesses presynaptic inhibitory alpha 2-adrenoceptors and adenosine receptors, as well as facilitatory beta 2-adrenoceptors and angiotensin II receptors regulating noradrenaline release under normoxic conditions. During anoxia the responses to alpha 2-adrenoceptors and adenosine receptor stimulation are lost, whereas facilitatory responses to beta 2-adrenoceptors and adenosine II receptor stimulation are maintained and these receptors appear to be maximally stimulated. This differential presynaptic modulation in anoxia may contribute to enhanced sympathetic activity in ischaemia.  相似文献   

5.
1. This investigation was undertaken to compare pre- and postjunctional receptors involved in the responses of the canine mesenteric and pulmonary arteries to angiotensin II. 2. In the mesenteric artery, angiotensin II caused an enhancement of tritium overflow evoked by electrical stimulation (EC30% = 5 nM), the maximal effect representing an increase by about 45%. Postjunctionally, angiotensin II caused concentration-dependent contractions (pD2 = 8.57). Saralasin antagonized both pre- and postjunctional effects of angiotensin II, but it was more potent at post- than at prejunctional level (pA2 of 9.51 and 8.15, respectively), while losartan antagonized exclusively the postjunctional effects of angiotensin II (pA = 8.15). PD123319 had no antagonist effect either pre- or postjunctionally. 3. In the pulmonary artery, angiotensin II also caused an enhancement of the electrically-evoked tritium overflow (EC30% = 1.54 nM), its maximal effect increasing tritium overflow by about 80%. Postjunctionally, angiotensin II caused contractile responses (pD2 = 8.52). As in the mesenteric artery, saralasin antagonized angiotensin II effects at both pre- and postjunctional level and it was more potent postjunctionally (pA2 of 9.58 and 8.10, respectively). Losartan antagonized only the postjunctional effects of angiotensin II (pA2 = 7.96) and PD123319 was ineffective. 4. It is concluded that in both vessels: (1) pre- and postjunctional receptors belong to a different subtype, since they are differently antagonized by the same antagonists; (2) postjunctional receptors belong to AT1 subtype, since they are blocked by losartan but not by AT2 antagonists; (3) prejunctional receptors apparently belong to neither AT1 or AT2 subtype since they are blocked by neither AT1 nor AT2 antagonists.  相似文献   

6.
Angiotensin II may be an important mediator of neointima formation in vascular disease. This study was designed to examine the mechanisms involved in angiotensin II-stimulated migration of human and rat aortic vascular smooth muscle cells (VSMCs). VSMCs were seeded in one corner of Nunc four-well culture chambers; angiotensin II within filter paper was glued onto the wall of the opposite side. After 48 hours of incubation in serum-free medium containing growth-arresting factor, migrated cells were counted using a light microscope. Angiotensin II (2 x 10(-11) to 2 x 10(-8) mol/L) increased migration of VSMCs in a concentration-dependent manner. Interestingly, at higher concentrations of angiotensin II (up to 2 x 10(-6) mol/L), migration was reduced to levels comparable with control levels. Losartan, an AT1 receptor antagonist, prevented migration, while PD123319, an AT2 receptor antagonist, had no significant inhibitory effect. Transforming growth factor-beta 1 (TGF-beta 1; 0.01 to 10.0 pg/mL) inhibited migration induced by angiotensin II (2 x 10(-8) mol/L) in a concentration-dependent manner. A neutralizing TGF-beta antibody unmasked migratory effects of high concentrations of angiotensin II. Furthermore, angiotensin II (10(-6) mol/L) upregulated TGF-beta 1 mRNA levels fivefold in rat and fourfold in human VSMCs; this effect was prevented by losartan but not by PD123319. Thus, the effects of angiotensin II on migration of VSMCs are bimodal, ie, both migratory and antimigratory pathways are activated. Autocrine release of TGF-beta 1 induced by angiotensin II exerts an antimigratory effect in rat and human VSMCs. The AT1 receptor is involved in regulation of both pathways.  相似文献   

7.
BACKGROUND: We assessed the role of extracellular signal-regulated kinases (ERKs) in Ang II-stimulated contraction and associated signaling pathways in vascular smooth muscle cells (VSMCs) from human small arteries. METHODS AND RESULTS: VSMCs derived from resistance arteries (<300 microm in diameter) from subcutaneous gluteal biopsies of healthy subjects (n=8) were used to assess Ang II-stimulated [Ca2+]i, pHi, and contractile responses. [Ca2+]i and pHi were measured with fura 2-AM and BCECF-AM, respectively, and contraction was measured photomicroscopically in cells grown on Matrigel matrix. To determine whether tyrosine kinases and ERKs influence Ang II-stimulated responses, cells were pretreated with 10(-5) mol/L tyrphostin A-23 (tyrosine kinase inhibitor) and PD98059 (MEK inhibitor). Ang II-stimulated MEK activity was determined by tyrosine phosphorylation of ERKs. The angiotensin receptor subtypes (AT1 and AT2) were assessed with [Sar1,Ile8]Ang II (a nonselective subtype antagonist), losartan (a selective AT1 antagonist), and PD123319 (a selective AT2 antagonist). Ang II dose-dependently increased [Ca2+]i (pD2=8.4+/-0.36, Emax=541+/-55 nmol/L), pHi (pD2=9. 4+/-0.29, Emax=7.19+/-0.01), and contraction (pD2=9.2+/-0.21, Emax=36+/-2.2%). Ang II induced rapid tyrosine phosphorylation of ERKs, which was inhibited by PD98059. Tyrphostin A-23 and PD98059 attenuated (P<0.05) Ang II-stimulated second messengers, and PD98059 reduced Ang II-induced contraction by >50%. [Sar1,Ile8]Ang II and losartan, but not PD123319, blocked Ang II-stimulated responses. CONCLUSIONS: These data demonstrate that in VSMCs from human peripheral resistance arteries, functional Ang II receptors of the AT1 subtype are coupled to signaling cascades involving Ca2+ and pHi pathways that are partially dependent on tyrosine kinases and ERKs. ERKs, the signaling cascades characteristically associated with cell growth, may play an important role in Ang II-stimulated contraction of human VSMCs.  相似文献   

8.
Flowering-time genes modulate the response to LEAFY activity   总被引:1,自引:0,他引:1  
Angiotensin 1-7 (Ang 1-7) has been reported to induce relaxation which is partially blocked by a kinin receptor antagonist. We investigated the relationship between kinins and angiotensin peptides with use of preconstricted isolated pig coronary arteries. Ang 1-7 alone (up to 10(-5) M) had no relaxant effect. Bradykinin (BK) (10(-10)-10(-7) M) induced transient relaxation, returning to basal tone, although BK remained in the bath. In these BK-stimulated rings, Ang 1-7 but not BK (both 5 x 10(-6) M) again relaxed the rings by approximately 50%. This relaxation was blocked by a BK B2 antagonist, a kininase, and a nitric oxide synthase inhibitor. Ang 1-7 inhibited purified angiotensin-converting enzyme (ACE) by 30 +/- 3.5% (n = 4) at 10(-6) M. However, in BK-pretreated rings, the ACE inhibitor ramiprilat did not induce relaxation, nor did it affect the relaxant response to Ang 1-7, which suggests that the effect of Ang 1-7 was not caused by ACE inhibition. Ang 1-7-induced vasodilation was reduced by 69.9 +/- 6.2% by an AT2 receptor blocker, PD-123319, and 29.3 +/- 7.3% by an AT1 antagonist, losartan. Neither the nonselective AT1/AT2 receptor antagonist sarthran nor saralasin inhibited the response to Ang 1-7. Ang II did not elicit relaxation either alone or in the presence of losartan, which suggests that activation of AT2 receptors does not cause relaxation. Thus, in the presence of bradykinin, Ang 1-7 relaxes pig coronary arteries via a PD-123319-sensitive mechanism involving nitric oxide, kinins and the BK B2 receptor. The kallikrein-kinin and renin-angiotensin systems may be linked through the interaction of Ang 1-7 and BK.  相似文献   

9.
This study was designed to define more precisely the relationship between specific angiotensin receptors and the growth of vascular smooth muscle cells in response to angiotensin II. These experiments employed quiescent A10 cells which were characterized as smooth muscle by the expression of specific contractlle proteins. Cell growth was monitored by measuring the incorporation of metabolic precursors into RNA or DNA. The treatment of A10 cells with angiotensin II (1 microM) stimulated a hypertrophic response as indicated by an increase in RNA synthesis and protooncogene expression in the absence of DNA synthesis. This increase in RNA synthesis could be blocked by PD123319, an AT2 antagonist, but not by losartan, an AT1 antagonist. RT-PCR analysis demonstrated that quiescent A10 cells express only the AT2 receptor while proliferating A10 cells express the AT1a and AT1b receptors in addition to the AT2 receptor. In addition, induction of AT2 receptor-mediated RNA synthesis was prevented by indomethacin, a cyclooxygenase inhibitor. These studies therefore support a direct connection between the AT2 receptor and smooth muscle growth that is mediated, in part, by prostaglandin synthesis.  相似文献   

10.
We have shown that the renin-angiotensin system (RAS) is involved in glucose homeostasis during acute hemorrhage. Since almost all of the physiological actions described for angiotensin II were mediated by AT1 receptors, the present experiments were designed to determine the participation of AT1 receptors in the hyperglycemic action of angiotensin II in freely moving rats. The animals were divided into two experimental groups: 1) animals submitted to intravenous administration of angiotensin II (0.96 nmol/100 g body weight) which caused a rapid increase in plasma glucose reaching the highest values at 5 min after the injection (33% of the initial values, P < 0.01), and 2) animals submitted to intravenous administration of DuP-753 (losartan), a non-peptide antagonist of angiotensin II with AT1-receptor type specificity (1.63 mumol/100 g body weight as a bolus, i.v., plus a 30-min infusion of 0.018 mumol 100 g body weight-1 min-1 before the injection of angiotensin II), which completely blocked the hyperglycemic response to angiotensin II (P < 0.01). This inhibitory effect on glycemia was already demonstrable 5 min (8.9 +/- 0.28 mM, angiotensin II, N = 9 vs 6.4 +/- 0.22 mM, losartan plus angiotensin II, N = 11) after angiotensin II injection and persisted throughout the 30-min experiment. Controls were treated with the same volume of saline solution (0.15 M NaCl). These data demonstrate that the angiotensin II receptors involved in the direct and indirect hyperglycemic actions of angiotensin II are mainly of the AT1-type.  相似文献   

11.
Rat brain cortex slices and synaptosomes preincubated with [3H]noradrenaline were used to investigate whether the NMDA-evoked noradrenaline release is modulated by agonists or antagonists at presynaptic alpha 2-adrenoceptors. In experiments on slices, noradrenaline and the preferential alpha-adrenoceptor agonists talipexole (former B-HT 920) and clonidine inhibited the NMDA-evoked tritium overflow whereas the selective alpha 1-adrenoceptor agonists cirazoline and methoxamine were ineffective. The alpha 2-adrenoceptor antagonists rauwolscine and idazoxan facilitated the NMDA-evoked tritium overflow whereas the preferential alpha 1-adrenoceptor antagonist prazosin was ineffective. The concentration-response curve of talipexole for its inhibitory effect on NMDA-evoked overflow was shifted to the right by idazoxan (apparent pA2 = 7.5). The EC50 of NMDA (97 mumol/l) for its stimulating effect on tritium overflow was not substantially changed by blockade of alpha 2-autoreceptors with 1 mumol/l rauwolscine (EC50 of NMDA in the presence of the alpha 2-adrenoceptor antagonist, 155 mumol/l), but the maximal overflow of tritium was increased 2.5 fold by this rauwolscine concentration. In experiments on synaptosomes, talipexole and noradrenaline inhibited the NMDA-evoked tritium overflow. The inhibitory effect of talipexole was abolished by idazoxan which, given alone, was ineffective, as was prazosin. Talipexole did also not produce an inhibition when tritium overflow was evoked by NMDA in the presence of omega-conotoxin GVIA 0.1 mumol/l; the latter, by itself, decreased the response to NMDA by about 55%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study was undertaken to investigate changes in aortic geometry and compliance after long-term blockade of angiotensin receptors type 1 (AT1) and AT2 receptors under basal conditions and after myocardial infarction (MI). Sham-operated (sham) or MI rats received either no treatment, AT1 antagonist GR138950C (GR; 2 mg/kg/day i.v.), or AT2 antagonist PD123319 (PD; 3 mg/kg/day s.c.). After 3 weeks, mean arterial blood pressure (MAP) was measured. Thoracic aorta diastolic diameter (D[dia]), compliance coefficient (CC), and distensibility coefficient (DC) were determined noninvasively in anesthetized rats by using ultrasound and wall tracking. After the rats were killed, histologic measurements were made on aortic cross sections. In sham rats, MAP was reduced by GR treatment (76 +/- 6 vs. 106 +/- 5 mm Hg), but not by PD. D(dia) was reduced in both GR-treated (1.74 +/- 0.08 vs. 2.09 +/- 0.05 mm) and PD-treated (1.83 +/- 0.05 vs. 2.09 +/- 0.05 mm) sham rats. CC and DC were not modified by either treatment. Although media cross-sectional area was not affected by either GR or PD treatment in sham rats, media thickness and media/lumen ratio were increased in both cases. Induction of MI had no effect on aortic structure, geometry, or mechanics; however, treatment with either GR or PD improved DC versus untreated MI rats. We conclude that AT1 and AT2 receptors are involved in angiotensin II-mediated effects on aortic geometry and mechanics under both basal conditions and after MI. Whereas blockade of AT1 receptors most likely influences vascular properties through a depressor mechanism, AT2 receptors induce pressure-independent remodeling.  相似文献   

13.
We measured the activity of mitogen-activated protein (MAP) kinases, enzymes believed to be involved in the pathway for cell proliferation, in rat aortic strips with or without endothelium, and examined effects of angiotensin receptor antagonists, endothelin receptor antagonists and nitric oxide (NO)-related agents. Endothelium removal produced an activation of MAP kinase activity in the strips, whereas the enzyme activity was not affected in the adventitia. The MAP kinase activation was inhibited by either the angiotensin AT1 receptor antagonist losartan or the endothelin ETA receptor antagonist BQ 123. The combination of both antagonists caused an additive inhibition. The angiotensin AT2 receptor antagonist PD 123,319 and the endothelin ETB receptor antagonist BQ 788 did not affect the MAP kinase activation. The NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) caused an activation of MAP kinase in the endothelium-intact aorta and the MAP kinase activation was inhibited by losartan or BQ123. The NO releaser nitroprusside inhibited the MAP kinase activation induced by endothelium removal or angiotensin II. These results suggest that even in isolated arteries, NO of endothelial origin tonically exert MAP kinase-inhibiting effects and endogenous angiotensin II and endothelins in the media are tonically released to cause MAP kinase-stimulating effects in medial smooth muscle.  相似文献   

14.
We have characterized a specific binding site for angiotensin II (AngII) in chicken liver membranes. Pseudo-equilibrium studies at 22 degrees C for 30 min have shown that this binding site recognizes AngII with a high affinity (pKD of 8.13 +/- 0.21). The binding sites are saturable and relatively abundant (maximal binding capacity varies from 0.318 to 0.88 pmol/mg of protein). Nonequilibrium kinetic analyses at 22 degrees C revealed a calculated kinetic pKD of 8.77 +/- 0.20. The binding site is pharmacologically distinct from the classic AngII receptors AT1 and AT2. Competitive binding studies with chicken liver membranes demonstrated the following rank order of effectiveness: AngII (human; Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) > AngI(Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) > AngIII(Arg-Val-Tyr-Ile-His-Pro-Phe) > AngIV (Val-Tyr-Ile-His-Pro-Phe) > Ang(1-7) (Asp-Arg-Val-Tyr-Ile-His-Pro) > PD123319 (1-[4(dimethylamino)3-methylphenyl] methyl-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo [4,5-c]pyridine-6-carboxylic acid) > DuP753 (2-n-butyl-4-chloro-5 hydroxymethyl-1-[(2'-1H-tetrazol-5-yl)biphenyl-4-yl)methyl] imidazole. This atypical AngII binding site (chicken AT) was sensitive to increasing concentrations of DTT and Mn2+. The structure-activity relationship on position 1 of AngII showed that the primary N-terminal amine was essential for binding affinity ([Asp1]AngII > [Suc1]AngII > or = [Sar1]AngII), but modifications of the side chain in position 1 had less influence on the affinity ([Gly1]AngII > [Cys1]AngII approximately [aminoisobutyryl1]AngII approximately [Ser1]AngII > > > [Sar1]AngII). The presence of substantial quantities of this binding site in chicken liver membranes suggests the possibility that the chicken AT may play an important, yet unrecognized, role in the renin-angiotensin system.  相似文献   

15.
1. Although the actions of angiotensin II (Ang II) on renal haemodynamics appear to be mediated by activation of the AT1 receptor subtype, AT2 binding sites have also been evidenced in the adult kidney vasculature. As NO is known to mask part of the renal effects of vasoconstrictor drugs, we queried whether the Ang II-induced vasoconstrictions could occur via multiple receptor subtypes during inhibition of NO synthesis. We explored the effect of AT1 and AT2 receptor (AT-R) antagonists on Ang II-induced pressure increases during NO synthase or soluble guanylyl cyclase inhibition in rat isolated kidneys perfused in the presence of indomethacin at constant flow in a single-pass circuit. 2. In the absence of NO blockade, the AT1-R antagonist L-158809 (500 nM) antagonized the Ang II-induced vasoconstrictions, while the AT2-R antagonist PD-123319 (500 nM) had no effect. 3. Perfusing kidneys in the presence of either NO synthase inhibitors, L-NAME (100 microM) or L-NOARG (1 mM), or soluble guanylyl cyclase inhibitor, LY-83583 (10 microM), significantly increased both molar pD2 (from 9.40+/-0.25 to 10.36+/-0.11) and Emax values (from 24.9+/-3.1 to 79.9+/-4.9 mmHg) of the concentration-response curve for Ang II-induced vasoconstriction. 4. In the presence of L-NAME, 500 nM L158809 abolished the Ang II-induced vasoconstrictions whatever the concentration tested. On the other hand, 500 nM PD-123319 reversed the left shift of the concentration-response curve for Ang II (molar pD2 value 9.72+/-0.13) leaving Emax value unaffected (91.3+/-7.6 mmHg). 5. In the presence of L-NAME, the potentiated vasoconstriction induced by 0.1 nM and the augmented vasoconstriction induced by 10 nM Ang II were fully inhibited in a concentration-dependent manner by L-158809 (0.05-500 nM). By contrast, PD-123319 (0.5-500 nM) did not affect the 10 nM Ang II-induced vasoconstriction and concentration-dependently decreased the 0.1 nM Ang II-induced vasoconstriction plateauing at 65% inhibition above 5 nM antagonist. 6. Similar to PD-123319, during NO blockade the AT2-R antagonist CGP-42112A at 5 nM decreased by 50% the 0.1 nM Ang II-induced vasoconstriction and at 500 nM had no effect on 10 nM Ang II-induced vasoconstriction. 7. In conclusion, the renal Ang II-induced vasoconstriction, which is antagonized only by AT1-R antagonist in the presence of endogenous NO, becomes sensitive to both AT1- and AT2-R antagonists during NO synthesis inhibition. While AT1-R antagonist inhibited both L-NAME-potentiated and -augmented components of Ang II-induced vasoconstriction, AT2-R antagonists inhibited only the L-NAME-potentiated component.  相似文献   

16.
17.
Blockade of angiotensin II (Ang II) function during 8 days of oral therapy with lisinopril (20 mg/kg) and losartan (10 mg/kg) normalized the arterial pressure (112+/-3/70+/-3 mm Hg) and raised the plasma concentrations of the vasodilator peptide angiotensin-(1-7) [Ang-(1-7)] of 21 male spontaneously hypertensive rats (SHR). Treated animals were then given a 15-minute infusion of either mouse immunoglobulin G1 or a specific monoclonal Ang-(1-7) antibody while their blood pressure and heart rate were recorded continuously in the awake state. The concentrations of Ang II and Ang-(1-7) in arterial blood were determined by radioimmunoassay. Infusion of the Ang-(1-7) antibody caused significant elevations in mean arterial pressure that were sustained for the duration of the infusion and were accompanied by transient bradycardia. Although the hemodynamic effects produced by infusion of the Ang-(1-7) antibody had no effect on plasma levels of Ang II, they caused a twofold rise in the plasma concentrations of Ang-(1-7). A pressor response of similar magnitude and characteristics was obtained in a separate group of SHR treated with the combination of lisinopril and losartan for 8 days during an infusion of [Sar1-Thr8]Ang II. The pressor response induced by the administration of this competitive, non-subtype-selective Ang II receptor blocker was not modified by pretreatment of the rats with an angiotensin type-2 (AT2) receptor blocker (PD123319). Plasma concentrations of Ang II and Ang-(1-7) were not changed by the administration of [Sar1-Thr8]Ang II either in the absence or in the presence of PD123319 pretreatment. These results are the first to indicate an important contribution of Ang-(1-7) in mediating the vasodilator effects caused by combined inhibition of angiotensin-converting enzyme and AT1 receptors. The comparable results obtained by administration of [Sar1-Thr8]Ang II suggest that the vasodepressor effects of Ang-(1-7) during the combined treatment is modulated by a non-AT1/AT2 angiotensin subtype receptor.  相似文献   

18.
To determine whether angiotensin II (Ang II) stimulation of adult ventricular myocytes in vitro results in cellular hypertrophy, the changes in myocyte volume and protein content per cell were examined by confocal microscopy. Moreover, the possibility was considered that the upregulation of Ang II receptors on myocytes after infarction may potentiate and/or accelerate Ang II-mediated myocyte growth. Left ventricular myocytes isolated from control and failing hearts 3 days after infarction were cultured for 3 and 7 days in the presence of Ang II. Normal myocytes did not show an increase in volume and protein content at 3 days, but a 16% and 20% increase in these respective parameters was found at 7 days. Cell growth was faster and greater in myocytes from postinfarcted hearts. In these cells, myocyte volume increased 23% and protein content increased 28% at 3 days after Ang II administration. The higher hypertrophic reaction of myocytes from infarcted hearts occurred in spite of a 19% larger volume at isolation. In both groups of myocytes, the AT1 receptor blocker losartan completely inhibited the consequences of Ang II. Conversely, the AT2 receptor antagonist PD123319 had no effect on Ang II-induced hypertrophy. In conclusion, Ang II promotes myocyte growth through the activation of AT1 receptors, which modulate the time and magnitude of this cellular response.  相似文献   

19.
Tissue angiotensin II (AngII) is increased in the infarcted rat heart, where it may have autocrine or paracrine properties that influence cellular protein synthesis and growth and therefore tissue repair. It was our hypothesis that treatment with an AT1 receptor antagonist would attenuate fibrous tissue formation after myocardial infarction (MI). To investigate a role for local AngII in the regulation of connective tissue formation during early and late wound healing that follows MI, this study was undertaken. Animals were randomized into two groups in which rats were or were not treated with the AT1 receptor antagonist losartan (10 mg x kg(-1) daily gavage). At 1 and 4 weeks after experimental MI was induced by coronary artery ligation, rat hearts were examined. Infarct size, infarct area, and collagen volume fraction at the site of infarction and in noninfarcted myocardium were determined by picrosirius red staining with videodensitometry. Quantitative in vitro autoradiography was used to detect AngII receptor binding density ((125)I-(Sar1,Ile8)AngII). Compared with an untreated MI control group, in losartan-treated rats we found (1) infarct size was comparable in both groups at weeks 1 and 4, (2) infarct area was comparable between groups at week 1 but was significantly reduced (p < 0.05) at week 4 in losartan-treated rats, (3) a detectable reduction in collagen volume fraction at the site of MI was not found at week 1 but was reduced (p < 0.05) at remote sites at week 4, (4) AngII receptor binding density was reduced (p < 0.05) by 50% at the site of MI at both weeks 1 and 4 in keeping with delivery of losartan to this site of injury. Thus AT1 receptor antagonism appears to influence late phase wound healing at and remote to the site of MI and suggests an association between AngII and the fibrogenic response that appears in the injured rat heart. Although still speculative, an attenuation in fibrosis after MI may account for less ventricular dysfunction and geometric remodeling of right and left ventricles and ventricular arrhythmias that have been observed in such rats treated with angiotensin converting enzyme inhibitor or AT1 receptor antagonist.  相似文献   

20.
In the present study, we have characterized distribution and pharmacological properties of angiotensin II (Ang II) receptors in human adrenals frozen immediately after removal. Autoradiographic studies indicate that Ang II receptors are present throughout the gland. Co-incubations with DUP 753, a specific antagonist of the AT1 receptor, and with PD 123319, a specific antagonist of the AT2 receptor, reveal that Ang II receptors are mainly of type 2. The AT1 receptors are detected after 16 weeks of gestation at the periphery of the gland. Competition studies and Scatchard analysis reveal a homogenous population of high affinity AT2 binding sites (Kd = 0.68 +/- 0.1 nM). Binding capacities decrease from 1080 +/- 304 fmol/mg protein at 14 weeks to 275 +/- 55 fmol/mg protein at 21 weeks. These results differ from those obtained in adult glands where autoradiographic studies reveal that the AT1 receptors are found mainly in the zona glomerulosa and AT2 receptors mainly in the medulla. These data suggest that the AT2 receptors could be involved in the morphological or functional differentiation of the human fetal adrenal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号