首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified Reynolds equation is derived for thin film elastohydrodynamic lubrication (TFEHL) by means of the viscous adsorption theory. This TFEHL theory can be used to explain the deviation between the measured film thickness and that predicted from the convenient elastohydrodynamic lubrication (EHL) theory under very thin film conditions. Results show that the thinner the film, the greater the ratio of the adsorption layer to the total film thickness becomes, and the greater the value of the pressure–viscosity index (z′). An inverse approach is proposed to estimate the pressure distribution based upon the film thickness measurement and to determine the pressure–viscosity index of oil film, and the thickness (δ) and the viscosity ratio (η*) of the adsorption layer in TFEHL circular contacts. Based on TFEHL theory, the inverse approach can reduce z′ error, and provides a reasonably smooth curve of pressure profile by implementing the measurement error in the film thickness. This algorithm not only estimates the pressure, but also calibrates the film shape. Consequently, it predicts z′, η*, and δ with very good accuracy. It can also be used to evaluate the lubrication performance from a film thickness map obtained from an optical EHL tester. Results show that the estimated value of z′ is in very good agreement with the experimental data.  相似文献   

2.
The dielectric constant and the loss factor for several lubricating oils were both measured within the frequency range of 100 Hz–1.5 MHz. Measurements were made at atmospheric pressure with varying temperature, and at fixed temperature with varying pressure. The temperature dependence of the dielectric relaxation time could be expressed by the Vogel—Fulcher—Tammann (VFT) equation. In order to express the dielectric relaxation time as a function of temperature and pressure, a pressure‐dependent term was introduced into the characteristic temperature of the VFT equation. The experimental relaxation time could then be represented by a simple formula. Moreover, high‐pressure viscosity was calculated from the dielectric relaxation data by introducing the pressure dependence of the bulk modulus. The predicted results showed fairly good agreement with the viscosity data.  相似文献   

3.
The dependence of properties on the composition of lubricating oil base stocks (LOBS) available from Indian refineries has been studied. It has been observed that pour point is greatly influenced by the saturated component of the base stocks, whereas viscosity and viscosity index are greatly influenced by the aromatic content. The effect of various components on the viscosity/shear stress versus temperature behaviour of LOBS samples has also been investigated.  相似文献   

4.
Molecular simulations were used to characterize changes in lubricant viscosity that may occur during thin film elastohydrodynamic lubrication (EHL). Molecular dynamics simulations were performed at variable wall speed and film thickness such that the effects of both parameters could be evaluated. Using this approach it was found that the viscosity of thin films under large shear is subject to both shear thinning and oscillation with film thickness. A composite model was developed that incorporated both effects. The expected impact that this model might have on an EHL interface was evaluated using a continuum simulation. An overall decrease in viscosity with some oscillation near the interface edges was predicted due to the molecularly modeled thin film effects.  相似文献   

5.
The additive mixed oils, which are classified as non-Newtonian fluids, are widely used in many lubrication systems. During the past decade, several analyses of plane journal bearings using non-Newtonian lubricants have been reported, although no work has been reported on partial bearings. This paper attempts to fill this void. The non-Newtonian lubricant is taken to be pseudoplastic and two types of rheological model, based on a cubic shear stress law and a shear strain rate power law, have been considered. The computed results reported here are dimensionless and include the static as well as the dynamic characteristics of the bearing  相似文献   

6.
On the basis of the Shliomis ferromagnetic fluid model, this paper is mainly concerned with the influences of convective fluid inertia forces in magnetic fluid‐based conical squeeze film plates in the presence of external magnetic fields. By applying the averaged momentum principle, a lubrication equation governing the film pressure is derived. Some previous contributions can be obtained from special cases of the present studies. Comparing with the non‐inertia non‐magnetic case, better squeeze film performances are predicted for the magnetic fluid‐based conical plates operating with a larger value of the inertial parameter of fluid inertia forces, the volume concentration of ferrite particles and the strength of applied magnetic fields. Some numerical results with specific cone angles are also provided in tables for engineering applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
One of the main features of typical elastohydrodynamic lubricating (EHL) contacts is the unique horseshoe film shape, which can be readily observed by using interferometry and quite accurately modelled by the well-established EHL theory. However, an anomalous EHL film, characterized by a wedge shape together with a tiny dimple at the inlet region, is observed under pure sliding conditions with ultra slow speeds of 3–800 μm/s in an optical EHL test rig. The variations of the wedge and the inlet dimple with different sliding speeds and loads are investigated using a series of polybutene oils of high viscosities. It is found that the inclination of the wedge is dependent on sliding speeds, loads and oil viscosities. The dimple always occurs at the inlet. The appearance of an inlet dimple together with a wedge film shape is reported for the first time. The phenomenon can be attributed to a non-Newtonian characteristic of the lubricant: the limiting shear strength. Additionally, the influence of starvation on the film shape is also examined.  相似文献   

8.
An algorithm is developed for the study of the infinitely long slider bearing in general form, considering the lubricant to be an incompressible power law fluid in isothermal conditions. The earlier works on this topic were considered by taking cavitation boundary conditions when a cylinder moves over a plane lubricated with a power law fluid and in EHL solution in a particular case, viz. pure rolling of a cylinder over an identical cylinder. We have considered a general solution including elastohydrodynamic lubrication (EHL) for different values of power law exponent. Deviation of values of central film thickness for different values of power law exponent from those for Newtonian lubricants are presented. The effects of the power law exponent on the central film thickness, minimum film thickness and load capacity are analysed. The effects of rolling and sliding velocities of contact surfaces are also analysed in terms of an equivalent radius of a cylinder moving over a moving plane. Film shapes and pressure distributions are also calculated numerically and presented graphically for various values of central film thickness considered in this paper. A number of observations obtained here with pseudoplastic nature of lubricants are in good agreement with the experimental results. The theoretical observations suggest the behaviour of common lubricants as pseudoplastic fluids in the cases of slowly moving surfaces and motion under heavy load.  相似文献   

9.
Metalworking lubricants must allow the manufacture of acceptable products at competitive cost without causing harm to operators or the environment. One way of attaining such a goal is through the use of biobased raw materials in lubricant formaulations. Biobased materials are generally non‐toxic, easily biodegradable, and abundantly available from renewable agricultural sources. However, successful application of biobased marterials in lubrication requires a thorough understanding of the tribochemical properties of these agricultural products. Recent studies have shown that biobased lubricants comprising starch and vegetable oils have promising lubrication properties. This paper discusses investigations into the effect of film thickness on the friction properties of dry‐film lubricants formulated from starch‐soybean oil composites.  相似文献   

10.
Lin  Jaw-Ren 《Tribology Letters》2001,10(4):237-243
The non-Newtonian effects of an isothermal incompressibe laminar-flow lubricant on the dynamic stiffness and damping characteristics of one-dimensional slider bearings are theoretically examined. On the basis of Rabinowitsch fluid (cubic equation) model, the modified Reynolds equation considering bearing-squeeze action is derived to take into account the transient motion of the slider, and the non-Newtonian properties of lubricants. Applying a small perturbation technique, both the steady-state performance and the dynamic characteristics are evaluated. According to the results, the steady film pressure, load-carrying capacity, and the dynamic stiffness and damping behaviors are significantly affected by the values of the dimensionless nonlinear factor accounting for non-Newtonian effects, the wedge parameter of a slider profile and the squeeze number of bearing-squeeze action.  相似文献   

11.
Ceramic materials are often used in tribological applications because of their good mechanical properties. Silicon carbide (SiC) has a low density, high Young's modulus, high corrosion resistance, and very low friction in water. It is a very good candidate for replacing waterproof oil‐lubricated bearings in water pumps and for applications when water is used as a lubricant. In such applications the SiC dissolves very slowly in water to form silicilic acid. After running in, journal and bearing surfaces look like mirrors with very low roughness and very small friction coefficient. This paper reports on a parametric study to model the cylinder—plane configuration, which is then utilised in the specific case of SiC in water. The study was carried out in order to reduce the number of parameters and to ensure good precision of the results. The numerical model is applied to an SiC contact with a very low‐viscosity lubricant (water) using elastohydrodynamic (EHD) conditions. Multigrid techniques for the Reynolds equation and multilevel, multi‐integration methods for the elasticity equations are used to solve the EHD problem. These results are given in non‐dimensional form using the Moes parameters M and L for several velocities and loads. Comparison is made between the two‐ and three‐dimensional cases in order to assess the effects for the cylinder ends.  相似文献   

12.
Bore polishing resulting from the abrasive wear of the bore of diesel engines has become more evident with the introduction of turbo-charging and consequent high mileage. This paper identifies the principal characteristics of bore polish, suggests causes and records the examination of a particular used liner. A laboratory wear machine was then used to simulated bore polish conditions. The results are analysed and discussed.  相似文献   

13.
A single parameter, the pressure–viscosity coefficient, α, quantifies the pressure dependence of the viscosity of the liquid in elastohydrodynamic lubrication (EHL). Most published values of α have not been obtained from measurements of viscosity as a function of pressure. Rather, these effective pressure–viscosity coefficients have been derived from the measurement of the EHL film thickness, a more difficult procedure. In this article, five well‐characterized liquids that should be Newtonian in the EHL inlet are identified for which film‐derived coefficients have been reported. These coefficients are compared with coefficients derived from published viscosity correlations and new viscosity measurements. The film‐derived coefficients are found to not be an accurate representation of the piezoviscous response. The procedure of deriving a pressure–viscosity coefficient from a film thickness measurement does not offer an alternative to the simpler and easier viscometer measurement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The paper presents a report on the effect of processing conditions of Dika nut oil on its physicochemical properties and also on the assessment of the oil for use as biodegradable lubricant. The oil was expressed mechanically from coarsely ground kernel meals at 3 and 9 wt.% moisture content (wet basis), preheated at 75, 100 and 150 °C for 10, 20 and 30 min. The plots showed that the chemical properties of the oil had quadratic and linear relationships with the heating temperature and heating time, respectively. At 95% confidence level, the free fatty acid content, the saponification, the iodine and the acid values of the oil were significantly affected by various processing conditions. The processing conditions therefore showed significant influence on the physicochemical properties of the oil and consequently on its suitability for use as lubricant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The total demand for lubricants in India is in the region of 855,000 tonnes a year. This constitutes 1.5% of total petroleum products consumption. Presently, there are three lubricant refineries in the country with a total installed capacity of 535,000 tonnes. The shortfall, of about 370,000 tonnes (approximately 45% of demand), is met through imports. In addition, there are generated 60,000–65,000 tonnes a year of base oil through rerefining of used oils. The three refineries are being expanded in order to raise base oil production to 810,000 tonnes per annum. Some other refinery projects are also under consideration and approval by the government. The current expansion programmes, together with the projected new refineries, are expected to make India self-sufficient in terms of base stock production lubricant. Overall, lubricant production in India is entirely dependent on imported lubricant-bearing crudes, and not on the indigenous crudes, which are non-lube bearing. With recent advances in engine design, together with improved lubricant quality through high-performance lubricants, the consumption, or demand rate, has been in decline or unchanging in most countries. In India, a gap still exists between production and demand of lubricants, necessitating import. Since they are a high-value, non-energy product, lubricant conservation measures are therefore essential. Interest in rerefining of used oil is increasing, with more and more emphasis on making the processes environmentally friendly. The conventional acid-clay rerefining process is environmentally unfriendly, and hence needs modification. An attempt is made in this paper to highlight various rerefining processes available. The relative merits and demerits of each process are discussed, and among the various processes, that based on molecular/high vacuum distillation is covered in detail.  相似文献   

16.
In this work, the thermal elastohydrodynamic lubrication (TEHL) in an impact motion is explored using multigrid (MG) method and column by column scanning techniques. A steel ball impacts onto an infinite steel plane lubricated with a thin layer of oil. The study starts from a smooth contact problem and the results are compared with the corresponding isothermal ones. Then surface waviness is imposed on the steel ball surface to check the fluctuation in the oil film.  相似文献   

17.
In this paper, the effect of pressure dependent viscosity on the squeeze film characteristics between convex curved plates of a cosine form is presented. Micropolar fluid theory, which is a possible non-Newtonian model of a suspension of rigid particle additives, is applied to the study of the lubrication of cosine form convex curved plates. The modified Reynolds equation is solved for the fluid film pressure and then the cosine form by considering the exponential relationship in the viscosity variation. For iso-viscous lubricants, the effects of pressure dependent viscosities signify an increase in the values of the squeeze film pressure, the load capacity and the elapsed time. It provides useful information in designing the mechanisms of squeeze film plates for engineering application.  相似文献   

18.
Porous-bearing performance can significantly benefit from optimally designing the shape of the bearing. The present paper introduces an approach for designing the optimum shape of a slider bearing using an inverse method. The proposed approach utilises a sequential quadratic programming algorithm to minimise friction subject to load and centre of pressure requirements specified by the designer. Bearing characteristics, such as friction, load and centre of pressure, are obtained by solving a modified Reynolds-type equation numerically using the finite difference method. The modified Reynolds equation is derived on the basis of Stokes' microcontinuum theory of couple stress fluids, which is used to study non-Newtonian lubricants. Results show that the optimisation approach reduces the coefficient of friction. In addition, the dimensionless slip parameter is shown to be the most significant parameter affecting optimal friction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a theoretical analysis on the squeeze film characteristics between circular stepped plates lubricated with Rabinowitsch fluid is presented. By using Rabinowitsch fluid model, the modified Reynolds type equation is derived to study the dilatant and pseudoplastic nature of the fluid in comparison with Newtonian fluid. The closed form solution is obtained by using perturbation method. According to the results obtained, the load-carrying capacity and squeeze film time increases for dilatant fluids as compared to the corresponding Newtonian fluids whereas the reverse trend is observed for pseudoplastic fluids. Further, it is observed that the response time decreases as the step height increases.  相似文献   

20.
The ability of a lubricating oil to reduce wear and prevent damage of interacting solids is a crucial factor controlling lubricant formulation. It is well known that friction produces local high temperatures. Many chemical reactions that are initiated by the friction process itself occur at much lower temperatures than those needed to provide the activation energy. Under boundary lubrication conditions, a clean surface exposed as a result of mechanical activity of the solid surface is extremely reactive, especially in the case of metals. This review mostly relates to the tribochemistry of aluminium, and discusses the tribological characteristics of alcohol‐ and amine‐type liquids used as either additives or lubricants to lubricate aluminium and its alloys under boundary friction conditions. Although tribochemical reactions during sliding are perceived in various ways, here the emphasis is on the negative‐ion‐radical action mechanism (NIRAM) approach. This review addresses the question as to how present knowledge of tribochemistry can be applied to the elucidation of the mechanisms of action by which the boundary lubricant compounds considered reduce aluminium‐on‐aluminium, steel‐on‐aluminium, and aluminium‐on‐steel wear. Also, information and a discussion on the tribological behaviour of other additives and/or lubricants in relation to the friction and wear of aluminium and its alloys are presented. A concise review of the most recent work on the tribochemistry of selected fluorinated alcohols is also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号