共查询到19条相似文献,搜索用时 62 毫秒
1.
经验模态分解能有效处理非平稳、非线性信号,但在多次采用三次样条插值获取信号上、下包络的过程中容易产生影响分解精度的端点问题。为了抑制经验模态分解中存在的端点效应问题,提出了一种基于最小二乘支持向量机和镜像延拓的端点效应抑制方法。该方法采用最小二乘支持向量机对原始信号序列两端分别向左、右各延拓有限个数据点;用镜像延拓对延拓后的信号序列进行对称延拓处理,将其延拓成一个环形信号序列;对这一环形信号序列进行经验模态分解。通过对仿真信号以及真实脑电信号进行实验分析以及与其他延拓方法的对比,结果表明该方法能够有效抑制端点效应问题,并在抑制端点效应问题方面优于传统的支持向量机和最小二乘支持向量机。 相似文献
2.
3.
4.
经验模态分解(EMD)是一种先进的数据处理方法,对脑电信号(EEG)等非线性非平稳信号的处理非常有效。但是其在利用三次样条曲线构造上下包络时,端点附近的包络存在严重的摆动。针对该问题,在镜面延拓算法的基础上,提出了二次延拓算法。根据邻近端点的数据计算出该信号在端点处的拟合函数;利用该拟合函数在左右端点各延拓出一个极值点;采用镜面延拓算法对延拓后的信号进行EMD分解。算法考虑了信号端点处的变化趋势,使得端点处的延拓更加合理,从而使三次样条曲线在端点处不会出现大的摆动。仿真结果表明,该算法能有效地对脑电信号进行分解。 相似文献
5.
6.
7.
针对经验模态分解过程中产生的端点效应问题,提出了将镜像延拓和支持向量回归机相结合的端点延拓改进方法。利用支持向量回归机对原始信号的极值点数据序列两端进行预测,用镜像延拓法确定所预测极值点的位置。该改进方法解决了支持向量回归机对长数据序列预测不准确,以及镜像延拓法对端点不是极值点的短数据序列处理效果不佳等问题。引入六个评价标准,对端点延拓方法的效果进行了分析。结果表明,该改进方法能有效地抑制经验模态分解产生的端点效应。 相似文献
8.
在目前的生物特征识别方法中,虹膜识别被认为是最可靠的技术。提出一种基于经验模态分解和支持向量机的虹膜识别方法——EMD提取虹膜特征,SVM实现模式匹配。实验结果表明,该方法能够有效地应用到身份鉴别系统中。 相似文献
9.
EMD分解中端点数据的延长方法问题研究 总被引:1,自引:0,他引:1
目前的EMD分解中,延长左右两端数据主要是通过各种数学拟合的方式(镜像延拓、多项式拟合、神经网络延拓等)来实现。在实际中,通过延长信号的采样时间,同样能够使端点数据延长,从而抑制EMD分解时的端点效应。以周期谐波函数为例,通过数值实验,将用数学拟合延长两端数据的方法(以极值点的镜像延拓为例)与直接截取两端数据的方法进行比较。同时,为了比较两种数据延长方法的效果,分别将延长后的数据进行EMD分解,将实际的EMD分解结果作为矩阵,计算与理想分解结果之间的相关系数。得出以下结论:若左右各截取半个信号周期长度的数据信号,则得到的分解结果优于通过端点延拓方法得到的EMD分解结果,且截取的点数越多,得到的结果越接近理想的分解结果。 相似文献
10.
基于改进EMD的汽车动态称重信号处理 总被引:1,自引:0,他引:1
提出了利用改进经验模态分解的方法来分离轴重信号中的动态轮胎力.在简述轴重信号特点和模态分解骤的基础上,详细分析了端点效应和虚假模态产生的原因,利用Auto-regressive(AR)模型端点延拓法和相关系数法分别抑制端点效应和判断虚假模态,把虚假模态和残余量加在一起形成新的残余量作为轴重估计.实验结果表明了该方法的有效性,在车速不大于20 km/h时,轴重测量的最大误差为4.34%. 相似文献
11.
针对经验模态分解中存在的端点效应及模态混叠现象,提出一种新的改进方法。利用镜像延拓方法对信号两端数据进行延拓后,结合余弦窗函数以解决端点效应对分解结果的影响,再利用高频谐波法结合掩膜信号法抑制EMD分解过程中存在的模态混叠。通过实验对比验证了该方法的有效可行性。 相似文献
12.
经验模态分解的边界效应处理技术 总被引:2,自引:0,他引:2
经验模态分解是近年来发展起来的分析非线性、非平稳信号的新方法,已经应用于许多工程领域,并体现出了独特的优势,然而在经验模态分解过程中。当样条函数拟合信号上、下包络时却存在着棘手的端点问题。在论述经验模态分解原理的基础上,针对筛过程存在的边界效应,提出了将外推极值点与镜像延拓相结合的边界效应处理方法,进一步完善了经验模态分解理论;在仿真实验中,将所提的经验模态分解与基于镜像延拓、基于AR模型延拓等经验模态分解进行了性能对比,实验结果表明所提出的方法能够有效地抑制经验模态分解过程中出现的边界效应,具有通用性好、适应性强等优点。 相似文献
13.
基于HHT变换的脑电信号在不同阅读模式下的识别与分类 总被引:1,自引:0,他引:1
目的:针对Powerlab脑电信号记录仪获取脑电波形,分辨不同类型的脑电阅读模式。方法:对实验者在阅读不同材料(平静闭目、阅读英语、阅读诗歌、阅读现代文四种阅读模式)时的头皮脑电信号进行采样,使用希尔伯特-黄变换及支持向量机训练,分辨平静闭目和其他三种不同阅读模式,并针对经验模态分解时出现的常见情况——端点飞翼现象进行算法优化处理并比较其处理效果。结果:基于多项式拟合处理的经验模态分解分解后的脑电信号辨识率最高,稳定在65%水平,最高可达70%。结论:大脑在阅读状态下经经验模态分解和多项式拟合后的信号适合作为大脑阅读模式下的特征提取函数,并对有效阅读模式具有指导意义。 相似文献
14.
EMD信号分析方法边缘效应的分析 总被引:25,自引:1,他引:25
在论述了经验模式分解(EMD)信号分解原理的基础上,分析了其存在的边缘效应,并提出了通过添加极值点抑制边缘效应的思路和策略。然后,针对一个单分量非线性信号和齿轮箱振动信号,对比分析了添加两个极值点,一个极值点和直接以数据端点作为极值点三种方式进行EMD分解的效果,所提出的预测附加极值点较好地抑制了边缘效应,并指出了进一步完善的方向。 相似文献
15.
16.
针对希尔伯特-黄变换中的边界效应,提出了基于支持向量回归机的时间序列预测方法.在支持向量回归机的应用当中,参数的选取对它的泛化性能有很大影响.在讨论了参数对支持向量回归机的泛化性能的影响基础上,提出了通过微粒群优化算法来优化支持向量回归机参数的方法,使得支持向量回归机在应用中能够自适应的选择最优参数,从而获得了更好的泛化性能,提高了在端点处的延拓精度,很好地抑制了端点效应.试验表明,该优化算法能够很好解决支持向量回归机的参数选取问题.通过与神经网络的延拓方法和黄等人的HHTDPS结果对比,基于支持向量回归机的时间序列预测方法可以更好地解决在希尔伯特-黄变换中存在的边界效应,得到的固有模态函数具有较小的失真. 相似文献
17.
针对非平稳、非线性时间序列变化复杂、难以用单一智能方法进行有效预测的问题,提出一种新的基于经验模式分解和支持向量回归的混合智能预测模型。经验模式分解能将非平稳时间序列按其内在的时间特征尺度自适应地分解为多个基本模式分量,根据这些分量各自趋势变化的剧烈程度选择不同的核函数进行支持向量回归预测,对各预测分量进行加权组合,得到原始序列的准确预测值。实证研究表明对于非平稳、非线性时间序列的预测,不论是单步预测还是多步预测,该模型均能取得很好的预测效果。 相似文献
18.
短期风速多步预测的研究 总被引:1,自引:0,他引:1
为了提高风电场短期风速预测的精确度以及预测尺度,提出了一种将小波分解法、经验模式分解法及最小二乘支持向量机相结合对风速时间序列进行短期多步预测建模的方法。该方法采用小波分解法对风速信号进行分解,使之分解成不同频带的高频和低频分量;再利用最小二乘支持向量机对各分量建立预测模型,将各预测模型的预测值叠加可得到模型的预测结果。该模型称为预测模型Ⅰ。其次,将预测模型I的预测结果设为训练样本,采用经验模式分解法把训练样本集分解成若干本征模式分量和趋势项;再利用最小二乘支持向量机对各本征模式分量和趋势项建立预测模型,同时扩大模型的预测尺度;将各预测模型的预测值叠加可得该模型的预测结果。该模型称为预测模型Ⅱ。最后,将预测模型Ⅱ、Ⅰ的预测值叠加得到最终预测结果。实验结果表明,采用该方法预测的风电场短期风速的RMSE值为0.153,验证了该方法的有效性。 相似文献
19.
A Simple Decomposition Method for Support Vector Machines 总被引:21,自引:0,他引:21
The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for bound-constrained SVM formulations we demonstrate that the working set selection is not a trivial task. Then from the experimental analysis we propose a simple selection of the working set which leads to faster convergences for difficult cases. Numerical experiments on different types of problems are conducted to demonstrate the viability of the proposed method. 相似文献