首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 54 毫秒
1.
协同过滤算法是目前推荐系统中应用最广泛的技术,相似度的计算是该算法中关键的一步,它直接影响到后续的目标用户邻居集的选取及评分预测,最终决定着推荐的准确度。在传统的基于用户的协同过滤中,相似度的计算未考虑用户评分差异和商品的热度对相似度计算的影响。论文引入平均评分修正因子和热门商品惩罚因子,对传统的相似度计算公式加以优化。实验表明,改进后的相似度算法在电影推荐时,平均绝对误差(MAE)值较其他相似度算法更低,有着更好的推荐效果。  相似文献   

2.
基于用户的协同过滤通过获取最近邻的偏好实现对目标用户偏好的预测推荐,相似度计算为其核心步骤.传统数值相似度计算依赖于用户共同评分项的评分数值,用户-项目评分矩阵稀疏程度的加剧导致数值相似度计算准确性降低,难以为目标用户选取可靠的最近邻,影响推荐效果;现有结构相似度大多利用用户共同评分项占比度量,计算简单,受数据稀疏影响...  相似文献   

3.
用户间多相似度协同过滤推荐算法   总被引:5,自引:1,他引:4  
传统的User-based协同过滤推荐算法仅采用了单一的评分相似度来度量用户之间对任何项目喜好的相似程度。然而根据日常经验,人们对不同类型事物的喜好程度往往是不同的,单一的评分相似度显然无法准确描述这种不同。针对上述问题,提出了一种基于用户间多相似度的协同过滤推荐算法,即基于用户间对不同项目类型的多个评分相似度来计算用户对未评分项目的预测评分。实验结果表明,该算法可以有效地提高预测评分的准确性及推荐质量。  相似文献   

4.
提出了一个新的相似度概念——元相似度,并在此基础上对标准的协同过滤算法进行了改进.元相似度即相似度的相似度,与相似度相比元相似度是基于相似度矩阵而不是相关矩阵计算得出的.即使是在相关矩阵中未购买过任何相同商品的两个用户也可以用元相似度反映他们之间的相似关系,这样在一定程度上解决了冷启动和矩阵稀疏性问题.综合考虑元相似度...  相似文献   

5.
随着互联网技术的迅猛发展,互联网信息急剧增长,信息过载问题愈发凸显。面对海量的互联网信息,用户往往需要耗费大量的时间来搜索所需的信息或产品,而搜索的解往往受到制约。为解决信息过载问题,推荐系统应运而生。推荐系统根据用户的历史行为推测其需求、兴趣等,将用户感兴趣的信息、产品等推荐给用户。作为推荐领域中一类重要的推荐方法,基于记忆的协同过滤方法通常依据用户或产品的近邻信息来构造评分预测函数,其核心在于准确度量用户或产品之间的相似度。传统的相似度量,如皮尔逊、余弦及秩相关系数等,通常只考虑了用户之间的线性关系;而启发式相似度如基于3个特殊因子的PIP相似度及其改进方法,则只刻画了用户之间的非线性关系。事实上,在推荐系统中,就用户之间的相似关系而言,仅用线性或是非线性函数来度量均是不准确的。为了更为精细地刻画用户之间的相似程度,文中提出了基于非线性函数的用户极端评分行为的相似程度度量指数,通过将该指数融入传统的线性相关系数,构造了一个考虑极端评分行为的新的相似度。为验证该方法的有效性,基于Ml(100k)和Ml-latest-small两个数据集,将其与传统相似度以及启发式相似度进行比较,结果...  相似文献   

6.
协同过滤算法是个性化推荐系统中应用最广泛的一种推荐技术。随着用户数量和项目数量的增加,数据的稀疏性成为影响推荐质量的重要因素。为此,将传统相似度指标修正余弦相似性、Pearson相似度,与结构相似度指标Jaccard系数、Salton系数、IUF系数进行组合,提出6种组合相似度。在Movie Lens上的实验表明,基于组合相似度的优化协同过滤算法在平均绝对偏差MAE、均方根误差RMSE、召回率、覆盖率和确率等性能上都有了较大提高,提高了推荐质量。  相似文献   

7.
推荐技术已经成为信息过载时代提供个性化服务的关键技术。由于推荐结果的多样性可以提升推荐效果,多样性推荐方法开始备受关注。针对现有基于朋友好奇心的多样性推荐方法中,诸如朋友、信任关系等难以获取及比较稀疏的问题,提出了基于相似用户好奇心的多样性推荐方法(SUC)。分析用户的真实评分,计算相似用户集;采用协同过滤方法,计算用户的预测评分;分析用户的真实评分和预测评分,计算用户的好奇心评分;融合预测评分和好奇心评分,计算用户的项目推荐列表。SUC方法不需要额外的用户关系信息,更具普适性。在五个真实数据集上的实验表明,与基准方法相比,SUC方法不仅提高了推荐多样性,同时也提升了推荐准确率、召回率和覆盖率。  相似文献   

8.
传统协同过滤算法在计算相似度的时候,未考虑数据稀疏性以及项目类型相似程度,从而影响推荐质量.为了提高推荐精度,提出一种基于可信相似度的协同过滤算法.首先计算项目类型的相似程度与共同评分用户数和所有评分用户数之间的比例,然后根据类型相似程度和共同评分项的比例进行有机结合,计算相似可信度,形成合理的项目可信相似度.实验结果表明,该算法能够有效的提高推荐质量.  相似文献   

9.
吴正洋  汤庸  方家轩  董浩业 《计算机科学》2015,42(9):204-207, 225
协同过滤推荐是一种基于用户偏好的个性化推荐方法,一般包含两个步骤:首先根据用户或项目的标注信息计算出用户或项目的相似度,确定邻居集合;然后根据相似度进行排序推荐,其核心问题在于相似度的计算。为了更好地达到这一目的,近年来关于将用户社交网络信息融入相似度计算的方法受到广泛关注。用户的注册信息、项目评分和社交信息都可以作为用户比较的依据。基于此提出了通过构建用户本体,计算本体之间的语义相似度,从而找到相似用户集合,最终实现目标用户的推荐方法。该方法为本体技术与推荐系统的结合提供了一种思路,实验表明 它能够在一定程度上提高推荐的准确度。  相似文献   

10.
传统的协同过滤算法因为数据集稀疏性的增加而导致推荐准确性降低。针对该问题提出一种结合项目相似度的协同过滤推荐算法。首先计算项目之间的相似度,然后根据项目之间相似度,预测用户未评分项目评分估值,以减小目标用户与候选最近邻居所形成的数据集稀疏性,最后根据用户相似度获得项目推荐集。实验结果表明,该算法能提高寻找最近邻居的准确性,从而改善协同过滤的推荐质量。  相似文献   

11.
为解决协同过滤推荐中显示反馈数据缺失的情况和冷启动问题,综合考虑用户属性和隐式反馈数据,提出一种相似度计算和用户推荐方法。利用用户属性,充分挖掘用户信息,计算用户属性相似度,使用隐式反馈数据替代显示反馈数据计算用户行为相似度,融合两种相似度进行预测和用户推荐。在真实数据集上进行实验,实验结果表明,该方法具有准确性和有效性,解决了显示反馈数据缺失的问题,一定程度克服了用户冷启动问题。  相似文献   

12.
针对评分数据稀疏的情况下传统相似性计算的不足,提出了一种基于项目之间相似性的协同过滤算法。该算法结合用户对项目的评分和项目之间的兴趣度进行项目之间的相似性计算,在一定程度上减小了评分数据稀疏的负面影响。实验结果表明,该算法在评分数据稀疏的情况下,能使推荐系统的推荐质量明显提高。  相似文献   

13.
针对传统的基于用户的协同过滤(UCF)模型在相似性度量过程中没有充分考虑项目属性的问题,提出了两种考虑项目属性的协同过滤推荐模型。模型首先对用户评分相似性进行优化;然后从项目属性的角度统计用户关于不同项目的评价次数,获得优化的基于项目属性的用户相似性;最后通过自适应平衡因子协调处理两方面的相似性结果进行项目预测与推荐。实验结果表明,在不同的数据集中,新提出的模型不仅时间花费较为合理,而且评分预测准确性明显提高,平均提高了5%,从而证明了模型在改进用户相似性度量精度方面的有效性。  相似文献   

14.
提出了一种基于项目综合相似度的协同过滤算法。综合相似度是项目相似度和类别相似度进行加权, 加权方式是从热能学中协同计算燃烧传热量的高温辐射换热综合发射率ε公式比拟得出, 两者均是计算综合系数, 在计算综合系数中可以通用。实验结果表明, 在推荐不同的前N个项目的实验中, 用新方法得到的准确率高于传统方法; 在固定推荐数目改变最近邻的实验中, 用新方法得到的准确率高于传统方法, 因此可以得出结论:基于项目综合相似度的协同过滤算法可以提高计算准确性, 提高推荐质量。  相似文献   

15.
针对传统协同过滤推荐算法没有充分考虑用户属性及项目类别划分等因素对相似度计算产生的影响,存在数据稀疏性,从而导致推荐准确度不高的问题.提出一种基于用户属性聚类与项目划分的协同过滤推荐算法,算法对推荐准确度有重要影响的相似度计算进行了充分考虑.先对用户采用聚类算法以用户身份属性聚类,进而再对项目进行类别划分,在相似度计算中增加类别相似度,考虑共同评分用户数通过加权系数进行综合相似度计算,最后结合平均相似度,采用阈值法综合得出最近邻.实验结果表明,所提算法能够有效提高推荐精度,为用户提供更准确的推荐项目.  相似文献   

16.
协同过滤算法作为推荐系统中应用最广泛的算法之一,在大数据环境下面临严重的数据稀疏问题,使得近邻选择的效果不佳,直接影响了算法的推荐性能.为了解决这一问题,本文提出了一种基于用户部分特征的协同过滤算法(UPCF),该算法首先基于评分偏差和项目流行度进行矩阵缺失值填充,随后利用初始聚类中心优化的K-means算法对该填充矩阵进行项目聚类,并利用用户在项目分类下的局部特征进行近邻集合构建,最终采用基于用户的协同过滤算法获得推荐.我们采用流行的MAE指标对算法在MovieLens数据集上进行评测.实验表明,与目前流行的协同过滤算法相比,提出的UPCF算法在没有增加算法复杂性的前提下,性能有近10%的提升.  相似文献   

17.
推荐系统是电子商务系统中最重要的技术之一.协同过滤技术是当今应用最普遍的个性化推荐算法.针对用户评分数据的极端稀疏性和算法的可扩展性,首先利用云模型计算项目间相似度来预测用户对未评分项目的评分,来增加用户评分数据,再根据项目分类信息将用户-项目评分矩阵转换为用户-类别矩阵,降低了评分矩阵的维度,最后利用云模型计算用户间相似度,得到目标用户的最近邻居.实验结果表明,该方法具有较小的MAE,提高了推荐系统的推荐质量.  相似文献   

18.
针对用户普遍使用的树形浏览网页模式,提出一种新的自上而下的用户访问路径收集算法,此算法减少了短路径的生成,并将其合并到用户浏览树形路径中;基于交叉页面访问频度的概念建立交叉页面访问频度矩阵,为推荐系统的协同式过滤核心处理数据源,以交叉页面用户访问比重为判断依据,实现对用户浏览网页关联页面的推荐。  相似文献   

19.
用户的生活方式(lifestyle)在很大程度上决定着用户的消费习惯。所以针对用户评分数据的极端稀疏性和新用户的推荐问题,本文提出了一种基于用户生活方式的最近邻协同过滤推荐算法,通过描述用户生活方式的特征矩阵来计算用户间的相似性,初步预测用户对未评分项目的评分,对用户项评分矩阵进行调整,然后采用一种新颖的相似性度量方法计算用户的最近邻居。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号