共查询到19条相似文献,搜索用时 56 毫秒
1.
《计算机应用与软件》2017,(6)
基于压缩感知的目标跟踪算法具有简单、实时、高效的特点。快速压缩感知目标跟踪算法FCT(Fast Compressive Tracking)生成目标高维特征未考虑不同尺度滤波器生成特征的有效性,目标与候选样本之间的相似性度量仅考虑简单叠加,在目标受到光照、遮挡等外界因素的影响下易使跟踪结果出现偏差。针对这些问题,提出一种基于特征加权的快速压缩感知跟踪算法。该算法根据滤波器尺度,自适应地分配权值,生成目标高维特征。算法将候选样本各维压缩特征分类为目标压缩特征的可能性与贝叶斯分类器输出相乘,作为目标与候选样本之间的相似性度量。实验结果表明,提出的方法在目标受到光照、遮挡等外界因素的影响下具有更强的鲁棒性。 相似文献
2.
针对运动目标在被遮挡和目标纹理变化大时会导致跟踪丢失以及跟踪误差大等问题,提出了一种改进的压缩感知( CS)算法。算法采用设置Sigmoid函数响应阈值,判定是否存在遮挡,以决定是否更新分类器参数,使得目标在遇到较大遮挡时目标模型不会被错误更新;针对特征单一导致跟踪不稳定问题,提出根据设定融合规则进行灰度特征和纹理特征融合的方法,使得两种特征指导跟踪。实验证明:改进后的算法比传统算法跟踪成功率提高了17.84%,平均误差率降低11.59%。 相似文献
3.
针对被跟踪目标运动、纹理或环境变化时, 采用基于压缩感知目标跟踪算法目标易漂移、丢失的问题, 提出了改进的压缩感知目标跟踪算法。通过压缩感知算法提取灰度和纹理特征, 计算特征对样本分类结果并更新特征的权值, 使用加权过的特征寻找目标在下一帧的位置。对不同视频的测试结果表明, 提出的算法在目标运动、纹理或环境变化的情况下跟踪准确, 在目标大小80×120像素时平均帧速为25 fps。与传统的压缩感知跟踪算法和其他跟踪算法相比, 所提出的算法在目标运动、纹理或环境变化时能快速准确地获取跟踪目标, 并具有更强的鲁棒性。 相似文献
4.
针对基于压缩感知的目标跟踪算法中存在特征单一,在目标纹理或光照变化较大时跟踪不稳定的问题,提出了基于压缩感知的互补特征加权目标跟踪算法。该算法通过两个随机测量矩阵提取出两类互补的纹理特征和灰度均值特征,计算这两类特征对样本的分类结果并更新特征的权值,使用所选取的大权值特征寻找目标在下一帧的位置。在分类器更新过程中,针对不同特征在跟踪过程中的稳定性不同,采取不同速度的更新。对不同视频的实验结果表明,提出的算法跟踪准确,且满足实时性的要求。与相关算法相比,新算法在目标纹理或光照变化很大的情况下具有更强的鲁棒性。 相似文献
5.
目的 为了增强压缩感知跟踪算法在复杂场景下的性能,本文提出了一种特征选择与目标模型更新的改进跟踪方法。方法 提出的方法包含两方面的改进,一是根据特征的正负类条件概率分布的距离选择能有效区分目标与背景的特征;二是根据当前目标与原始目标的差异自适应更新目标外观模型,使得目标遇到较大遮挡或者姿态频繁改变时目标外观模型不会被错误更新。结果 实验表明,对于十个复杂环境下的经典视频序列,本文提出的基于压缩感知的改进跟踪算法在中心误差、成功率和精确度三个指标上均优于最近三个代表性的跟踪算法。结论 提出的新的特征选择和目标模型更新方法,既增强了压缩感知跟踪算法的鲁棒性,又加快了跟踪速度。 相似文献
6.
针对基于压缩感知的跟踪算法在目标发生纹理或光照较大变化或短暂遮挡等复杂情况下,容易发生漂移甚至跟丢的情况,提出一种将长时间跟踪与检测相融合的改进算法。该算法通过引入级联的搜索策略,在目标跟偏或跟丢后,可以快速地重新定位目标的准确位置,有效地减少了漂移发生的次数,很大程度上提高了跟踪的准确性和稳定性。对不同视频序列的测试结果表明,所提出的算法能够在目标发生快速不规则运动以及目标部分或全部被遮挡甚至在完全离开摄像机视野后,依然能够再次准确地检测并实时跟踪目标物体。 相似文献
7.
基于压缩感知理论的压缩跟踪算法能够有效地实现对目标的跟踪, 具有良好的实时性, 但该算法对目标特征没有进行在线选择导致跟踪鲁棒性不高. 本文提出一种基于特征在线选择的目标压缩跟踪算法. 首先, 在目标附近采样得到正负样本集合, 计算样本的多尺度矩形特征, 采用压缩感知中的随机投影矩阵对高维特征投影得到低维压缩域特征, 对压缩域特征进行在线选择提取最优特征, 剔除被污染的样本特征, 使用简单高效的朴素贝叶斯分类模型进行样本判断, 实现对目标的跟踪, 同时对跟踪中目标在摄像头中的尺度变化进行建模, 给出目标尺度变化的定量描述, 实现了适应目标尺度变化的多尺度跟踪. 实验结果表明本文算法具有更好的鲁棒性与更高的跟踪精度, 对目标跟踪中的遮挡、光线突变、尺度变化和非刚性形变等因素具有较好的抗干扰能力, 同时算法复杂度低, 可以满足实时性要求. 相似文献
8.
针对当前相关滤波跟踪算法在抗背景干扰、响应融合方式以及模型更新策略上的不足,提出一种基于上下文感知与自适应响应融合的相关滤波跟踪算法.通过引入上下文感知技术,提高算法在背景杂波及遮挡等跟踪场景下的鲁棒性;通过研究HOG特征和颜色直方图特征二者响应图和响应值的特点,提出一种自适应响应融合方法,提升融合响应图的可靠性;在模... 相似文献
9.
针对航拍视频的特性,对经典的压缩跟踪(Compression tracking,CT)算法进行了研究,发现了CT算法在样本采集和分类取样步骤中的不足并进行了相应的改进。采用Kalman滤波器预测目标的运动路径,并将预测结果应用于样本采集,自适应地修改搜索范围。更新了分类器的取样反馈过程,先对分类结果进行判断,评分绝对值低于某一阈值的分类结果不反馈给分类器,有效地保持了分类器的正确性。在改进算法的基础上,开发了基于航拍视频的目标跟踪系统。通过与经典压缩跟踪算法在实际航拍道路视频的测试和对比,验证了本文算法的有效性和实时性。 相似文献
10.
《微型机与应用》2016,(16)
目标跟踪技术作为机器视觉领域中的基础,有着广泛的应用,但其仍然存在许多问题。为了解决目标在光照变化和快速移动场景下跟踪漂移的问题,提出了基于SURF的压缩跟踪算法。首先选择跟踪目标并提取SURF特征,其次采用压缩感知理论对SURF高维特征降维,来减少特征描述的维数和计算时间,最后筛选压缩后的样本特征并训练分类器,来实现对多种复杂场景下目标实时准确跟踪。通过实验与传统的SURF算法和Compressive Tracking(CT)算法的对比,证明该算法不仅大大减少了目标在跟踪的过程中的计算量,其跟踪的实时性和准确性相较于CT算法和SURF算法都有所提高。 相似文献
11.
针对在复杂背景下,特别当目标与背景颜色相似、目标被遮挡时容易导致跟踪失败的问题,采用颜色与纹理两种互补特征融合的粒子滤波算法,同时提出一种融合策略自适应的抗遮挡跟踪方法,当遮挡发生时,适时切换融合策略,并在粒子滤波框架内嵌入mean-shift算法,克服了粒子退化现象。实验结果表明,该算法具有较强的抗遮挡能力,能够跟踪复杂背景下的目标。 相似文献
12.
特征加权融合的在线多示例学习跟踪算法 总被引:1,自引:0,他引:1
为了能更加准确鲁棒地跟踪目标,提出了特征加权融合的在线多示例学习跟踪算法(WFMIL)。WFMIL在多示例学习框架下分别训练两种特征(Hog和Haar)分类器。在跟踪过程中,通过线性运算融合成一个强分类器,同时在学习过程中对正包中的示例引入权重。实验结果统计表明WFMIL能很好地解决目标漂移问题,并且对目标遮挡、运动突变、光照变化以及运动模糊等具有较好的鲁棒性。 相似文献
13.
目的 针对基于压缩感知理论的跟踪算法跟踪效率不高和难以抗遮挡的问题,提出一种结合压缩感知和粒子群优化的跟踪算法。方法 将粒子群优化算法结合到压缩跟踪算法中,提出了采用粒子群优化的搜索方法替代在确定候选目标时,采用每隔一个像素选取一个候选目标的搜索策略;在目标发生遮挡时,采用粒子群优化的方法进行整幅图全局搜索。结果 20个视频序列数据库的目标跟踪结果表明,本文算法极大地提高了跟踪效率,并有很强的抗目标遮挡和形变的能力从而提高了跟踪的成功率。20个视频数据库进行了定量的分析,平均成功率达到了65.2%,平均中心位置偏差为33.4,平均每秒运行155.5帧。结论 提出的跟踪算法优化了搜索目标的计算次数,提高了算法的运行效率,当在目标发生遮挡时,采用粒子群优化进行全局搜索直到目标重新出现,从而提高了跟踪算法的跟踪成功率,本文算法能适用于不同场景,能够提高智能视频监控系统的智能监控性能。 相似文献
14.
Recently, compressive tracking (CT) has been widely proposed for its efficiency, accuracy and robustness on many challenging sequences. Its appearance model employs non-adaptive random projections that preserve the structure of the image feature space. A very sparse measurement matrix is used to extract features by multiplying it with the feature vector of the image patch. An adaptive Bayes classifier is trained using both positive samples and negative samples to separate the target from background. On the CT framework, however, some features used for classification have weak discriminative abilities, which reduces the accuracy of the strong classifier. In this paper, we present an online compressive feature selection algorithm(CFS) based on the CT framework. It selects the features which have the largest margin when using them to classify positive samples and negative samples. For features that are not selected, we define a random learning rate to update them slowly. It makes those weak classifiers preserve more target information, which relieves the drift when the appearance of the target changes heavily. Therefore, the classifier trained with those discriminative features couples its score in many challenging sequences, which leads to a more robust tracker. Numerous experiments show that our tracker could achieve superior result beyond many state-of-the-art trackers. 相似文献
15.
目的 可见光和热红外模态数据具有很强的互补性,RGBT(RGB-thermal)跟踪受到越来越多的关注。传统RGBT目标跟踪方法只是将两个模态的特征进行简单融合,跟踪的性能受到一定程度的限制。本文提出了一种基于动态交互和融合的方法,协作学习面向RGBT跟踪的模态特定和互补表示。方法 首先,不同模态的特征进行交互生成多模态特征,在每个模态的特定特征学习中使用注意力机制来提升判别性。其次,通过融合不同层次的多模态特征来获得丰富的空间和语义信息,并通过设计一个互补特征学习模块来进行不同模态互补特征的学习。最后,提出一个动态权重损失函数,根据对两个模态特定分支预测结果的一致性和不确定性进行约束以自适应优化整个网络中的参数。结果 在两个基准RGBT目标跟踪数据集上进行实验,数据表明,在RGBT234数据集上,本文方法的精确率(precision rate,PR)为79.2%,成功率(success rate,SR)为55.8%;在GTOT(grayscale-thermal object tracking)数据集上,本文方法的精确率为86.1%,成功率为70.9%。同时也在RGBT234和GTO... 相似文献
16.
针对单一特征目标跟踪算法因背景干扰、目标遮挡造成的跟踪失败问题,以及跟踪过程中每帧进行模型更新容易造成错误更新和实时性差的问题,提出了一种基于特征融合及自适应模型更新策略的相关滤波目标跟踪算法-多特征自适应相关滤波目标跟踪算法。该算法在特征提取阶段将边缘特征及HOG特征加权融合作为目标特征,加强对边缘特征的学习;在模型更新阶段通过计算预测区域与真实区域的奇异值特征向量相似度,并结合设定的阈值判断是否需要进行模型更新,通过自适应更新的方式减少模型的更新次数。在标准测试视频集下验证所提算法,并与两种经典相关滤波算法进行比较,结果表明该算法能够较好地适应背景干扰及目标遮挡问题,跟踪目标的平均中心误差减少了9.05像素,平均距离精度提高12.2%,平均重叠率提高4.53%。 相似文献
17.
18.
压缩跟踪将压缩感知理论引入到目标跟踪领域,较好地实现了跟踪的实时性,但是在复杂环境或遮挡情况下,仅利用分类分数最大值的矩形样本确定目标位置容易产生跟踪漂移,而且该算法没有考虑目标尺度因素。针对这些问题,提出了融合局部中心区域梯度方向直方图和多尺度矩形的多特征压缩跟踪算法,并提出利用多样本矩形平均的方法确定最终的目标位置。实验结果表明:该算法在目标剧烈运动、遮挡或者相似物体干扰的场景下能够有效抑制跟踪漂移,提高了跟踪的准确率和鲁棒性。 相似文献
19.
针对核相关滤波目标跟踪算法(KCF)使用单特征来描述所跟踪的目标,在复杂环境下,目标尺
度发生较大变化时,无法准确跟踪目标的问题,提出基于深度估计和特征融合的尺度自适应目标跟踪算法。首
先利用深度神经网络估计视频序列中目标的深度,建立并训练深度-尺度估计模型;在跟踪过程中,融合目标
方向梯度直方图(HOG)特征和 CN (Color Name)特征训练相关滤波器,利用深度估计网络得到目标深度值,并
利用深度-尺度估计模型得到目标的尺度值,从而在目标尺度发生变化时,能够调整目标框大小,实现尺度自
适应的目标跟踪算法。实验结果表明,与经典的 KCF 算法相比,可获得更高的精度,与尺度自适应的判别型
尺度空间跟踪(DSST)算法相比,在尺度变化较大时,跟踪速度更快;在环境复杂、目标被遮挡时,鲁棒性更好。 相似文献