首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximate graph coloring takes as input a graph and returns a legal coloring which is not necessarily optimal. We improve the performance guarantee, or worst-case ratio between the number of colors used and the minimum number of colors possible, toO(n(log logn)3/(logn)3), anO(logn/log logn) factor better than the previous best-known result.The work of the first author was supported by Air Force Grant AFOSR-86-0078 and NSF PYI Grant 8657527-CCR. The work of the second author was supported by a National Science Foundation Graduate Fellowship.  相似文献   

2.
A positive integern is a perfect power if there exist integersx andk, both at least 2, such thatn=x k . The usual algorithm to recognize perfect powers computes approximatekth roots forklog 2 n, and runs in time O(log3 n log log logn).First we improve this worst-case running time toO(log3 n) by using a modified Newton's method to compute approximatekth roots. Parallelizing this gives anNC 2 algorithm.Second, we present a sieve algorithm that avoidskth-root computations by seeing if the inputn is a perfectkth power modulo small primes. Ifn is chosen uniformly from a large enough interval, the average running time isO(log2 n).Third, we incorporate trial division to give a sieve algorithm with an average running time ofO(log2 n/log2 logn) and a median running time ofO(logn).The two sieve algorithms use a precomputed table of small primes. We give a heuristic argument and computational evidence that the largest prime needed in this table is (logn)1+O(1); assuming the Extended Riemann Hypothesis, primes up to (logn)2+O(1) suffice. The table can be computed in time roughly proportional to the largest prime it contains.We also present computational results indicating that our sieve algorithms perform extremely well in practice.This work forms part of the second author's Ph.D. thesis at the University of Wisconsin-Madison, 1991. This research was sponsored by NSF Grants CCR-8552596 and CCR-8504485.  相似文献   

3.
Approximate graph coloring takes as input a graph and returns a legal coloring which is not necessarily optimal. We improve the performance guarantee, or worst-case ratio between the number of colors used and the minimum number of colors possible, toO(n(log logn)3/(logn)3), anO(logn/log logn) factor better than the previous best-known result.  相似文献   

4.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

5.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

6.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

7.
Fast algorithms are presented for performing computations in a probabilistic population model. This is a variant of the standard population protocol model, in which finite-state agents interact in pairs under the control of an adversary scheduler, where all pairs are equally likely to be chosen for each interaction. It is shown that when a unique leader agent is provided in the initial population, the population can simulate a virtual register machine with high probability in which standard arithmetic operations like comparison, addition, subtraction, and multiplication and division by constants can be simulated in O(n log5 n) interactions using a simple register representation or in O(n log2 n) interactions using a more sophisticated representation that requires an extra O(n log O(1) n)-interaction initialization step. The central method is the extensive use of epidemics to propagate information from and to the leader, combined with an epidemic-based phase clock used to detect when these epidemics are likely to be complete. Applications include a reduction of the cost of computing a semilinear predicate to O(n log5 n) interactions from the previously best-known bound of O(n 2 log n) interactions and simulation of a LOGSPACE Turing machine using O(n log2 n) interactions per step after an initial O(n log O(1) n)-interaction startup phase. These bounds on interactions translate into polylogarithmic time per step in a natural parallel model in which each agent participates in an expected Θ(1) interactions per time unit. Open problems are discussed, together with simulation results that suggest the possibility of removing the initial-leader assumption. An extended abstract of this paper previously appeared in DISC 2006 [6]. Some additional material previously appeared in DISC 2007 [7]. The second author was supported in part by NSF grants CNS-0305258 and CNS-0435201.  相似文献   

8.
The main results of this paper are efficient parallel algorithms, MSP and LOCATE, for computing minimal spanning trees and locating minimal paths in directed graphs, respectively. Algorithm MSP has time complexityO(log3 n) usingO(n 3/logn) processors, while LOCATE has time complexityO(logn) usingO(n 2) processors. Algorithm MSP is derived from sequential algorithms, when the unbounded parallelism model is used.  相似文献   

9.
Shortest path problems can be solved very efficiently when a directed graph is nearly acyclic. Earlier results defined a graph decomposition, now called the 1-dominator set, which consists of a unique collection of acyclic structures with each single acyclic structure dominated by a single associated trigger vertex. In this framework, a specialised shortest path algorithm only spends delete-min operations on trigger vertices, thereby making the computation of shortest paths through non-trigger vertices easier. A previously presented algorithm computed the 1-dominator set in O(mn) worst-case time, which allowed it to be integrated as part of an O(mn+nrlogr) time all-pairs algorithm. Here m and n respectively denote the number of edges and vertices in the graph, while r denotes the number of trigger vertices. A new algorithm presented in this paper computes the 1-dominator set in just O(m) time. This can be integrated as part of the O(m+rlogr) time spent solving single-source, improving on the value of r obtained by the earlier tree-decomposition single-source algorithm. In addition, a new bidirectional form of 1-dominator set is presented, which further improves the value of r by defining acyclic structures in both directions over edges in the graph. The bidirectional 1-dominator set can similarly be computed in O(m) time and included as part of the O(m+rlogr) time spent computing single-source. This paper also presents a new all-pairs algorithm under the more general framework where r is defined as the size of any predetermined feedback vertex set of the graph, improving the previous all-pairs time complexity from O(mn+nr2) to O(mn+r3).  相似文献   

10.
An optimal parallel algorithm for volume ray casting   总被引:3,自引:0,他引:3  
Volume rendering by ray casting is computationally expensive. For interactive volume visualization, rendering must be done in real time (30 frames/s). Since the typical size of a 3D dataset is 2563, parallel processing is imperative. In this paper, we present anO(logn) EREW algorithm for volume rendering. We useO(n 3) processors that can be optimized toO(log3 n) time withO(n 3/log3 n) processors. We have implemented our algorithm on a MasPar MP-1. The implementation results show that a frame of size 2563 is generated in 11 s by 4096 processors. This time can be further reduced by the use of large number of processors.  相似文献   

11.
He  Xin 《Algorithmica》1990,5(1-4):545-559

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

  相似文献   

12.
We present a randomized and a deterministic data structure for maintaining a dynamic family of sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting existing sequences. Both data structures support equality tests inO(1) time. The randomized version supports new sequence creations inO(log2 n) expected time wheren is the length of the sequence created. The deterministic solution supports sequence creations inO(logn(logmlog* m+logn)) time for themth operation. This work was supported by the ESPRIT Basic Research Actions Program, under Contract No. 7141 (Project ALCOM II).  相似文献   

13.
M. Jerrum  U. Vazirani 《Algorithmica》1996,16(4-5):392-401
A new approximation algorithm for the permanent of ann ×n 0,1-matrix is presented. The algorithm is shown to have worst-case time complexity exp(O(n 1/2 log2 n)). Asymptotically, this represents a considerable improvement over the best existing algorithm, which has worst-case time complexity exp((n)).Supported by SERC Grant GR/F 90363; work done in part while visiting DIMACS (Center for Discrete Mathematics and Computer Science).Supported by an NSF PYI grant, with matching equipment grant from the AT&T Foundation; work done in part while visiting DIMACS.  相似文献   

14.
To study different implementations of arrays, we present four results on the time complexities of on-line simulations between multidimensional Turing machines and random access machines (RAMs). First, everyd-dimensional Turing machine of time complexityt can be simulated by a log-cost RAM running inO(t(logt)1–(1/d)(log logt)1/d) time. Second, everyd-dimensional Turing machine of time complexityt can be simulated by a unit-cost RAM running inO(t/(logt)1/d) time, provided that the input length iso(t/(logt)1/d). Third, there is a log-cost RAMR of time complexityO(n), wheren is the input length, such that, for anyd-dimensional Turing machineM that simulatesR on-line,M requires (n 1 + (1/d))/(logn(log logn)1 + (1/d))) time. Fourth, every unit-cost RAM of time complexityt can be simulated by ad-dimensional Turing machine inO(t 2(logt)1/2) time ifd = 2, and inO(t 2) time ifd 3. This result uses the weight-balanced trees of Nievergelt and Reingold.This paper was prepared while M. C. Loui was visiting the National Science Foundation in Washington, DC, and the Institute for Advanced Computer Studies, University of Maryland, College Park, MD. The views, opinions, and conclusions in this paper are those of the authors and should not be construed as an official position of the National Science Foundation, Department of Defense, U.S. Air Force, or any other U.S. government agency. The research of M. C. Loui was supported by the National Science Foundation under Grant CCR-8922008.  相似文献   

15.
A sweepline algorithm for Voronoi diagrams   总被引:26,自引:2,他引:24  
We introduce a geometric transformation that allows Voronoi diagrams to be computed using a sweepline technique. The transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms haveO(n logn) worst-case running time and useO(n) space.  相似文献   

16.
Path-distance heuristics for the Steiner problem in undirected networks   总被引:4,自引:0,他引:4  
An integrative overview of the algorithmic characteristics of three well-known polynomialtime heuristics for the undirected Steiner minimum tree problem:shortest path heuristic (SPH),distance network heuristic (DNH), andaverage distance heuristic (ADH) is given. The performance of thesesingle-pass heuristics (and some variants) is compared and contrasted with several heuristics based onrepetitive applications of the SPH. It is shown that two of these repetitive SPH variants generate solutions that in general are better than solutions obtained by any single-pass heuristic. The worst-case time complexity of the two new variants isO(pn 3) andO(p 3 n 2), while the worst-case time complexity of the SPH, DNH, and ADH is respectivelyO(pn 2),O(m + n logn), andO(n 3) wherep is the number of vertices to be spanned,n is the total number of vertices, andm is the total number of edges. However, use of few simple tests is shown to provide large reductions of problem instances (both in terms of vertices and in term of edges). As a consequence, a substantial speed-up is obtained so that the repetitive variants are also competitive with respect to running times.  相似文献   

17.
The LZ2 compression method is hardly parallelizable since it is known to be P-complete. In spite of such negative result, we show in this paper that the decoding process can be parallelized efficiently on an EREW PRAM model of computation with O(n/log(n)) processors and O(log2 n) time, where n is the length of the output string.  相似文献   

18.
The combinatorial explosion of motif patterns occurring in 1D and 2D arrays leads to the consideration of special classes of motifs growing linearly with the size of the input array. Such motifs, called irredundant motifs, are able to succinctly represent all of the other motifs occurring in the same array within reasonable time and space bounds. In previous work irredundant motifs were extracted from 2D arrays in O(N2log2nloglogn) and O(N3) time, where N is the size of the 2D input array and n is its largest dimension.In this paper, we present an algorithm to extract irredundant motifs from 2D arrays that is quadratic in the size of the input. The input is defined on a binary alphabet. It is shown that the algorithm is optimal and practically faster than the previous ones.  相似文献   

19.
Summary Using modular arithmetic we obtain the following improved bounds on the time and space complexities for n × n Boolean matrix multiplication: O(n log 2 7 lognlogloglognloglogloglogn) bit operations and O(n 2loglog n) bits of storage on a logarithmic cost RAM having no multiply or divide instruction; O(n log 2 7(logn)2–1/2log 2 7(loglog n)1/2log 2 7–1) bit operations and O(n 2log n) bits of storage on a RAM which can use indirect addressing for table lookups. The first algorithm can be realized as a Boolean circuit with O(n log 2 7lognlogloglognloglogloglogn) gates. Whenever n×n arithmetic matrix multiplication can be performed in less than O(n log 2 7) arithmetic operations, our results have corresponding improvements.This work was supported in part by the Office of Naval Research under contract N00014-67-0204-0063, by the National Research Council of Canada under grant A4307, and by the National Science Foundation under grants MCS76-17321 and GJ-43332  相似文献   

20.
In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√logn) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log logn); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain anO(logn/log logn + √logn (log logm ? log logn)) time algorithm for sortingn integers from the set {0,...,m ? 1},mn, with a processor-time product ofO(n log logm log logn) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takesO(logn/log logn) time on an allocated PRAM of sizen. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r logn/(logr + log logn)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of sizen ofr-slow virtual processors (one processor simulatesr processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n logn/log logn) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in anO(logN/log logN) time algorithm for (stable) sorting ofn integers from the set {0,...,m ? 1} withn-processors on a COMMON CRCW PRAM; hereN = max(n, m). In particular if,m =n O(1), then sorting takes Θ(logn/log logn) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT isO(n(log logn)2). Algorithm for COMMON usesn processors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号