首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel 4-((5-formyl-2,4-dihydroxyphenyl)diazenyl)benzylphosphonic acid (FPABP) ligand was synthesized and bound to silica-gel which was activated with 3-aminopropyltriethoxysilane (APTES). Cu(II), Co(II), Ni(II) and Mn(II) complexes of silica-supported ligand (FDPDABP) were synthesized. The ligand and its complexes were characterized by using NMR, FT-IR, elemental analysis, ICP-OES and scanning electron Microscope (SEM). Catalytic properties of the complexes were investigated for the selective oxidation of cyclohexane under microwave power. SiO2-FDPDABP-Cu(II) complex showed good catalytic activitiy for the selective oxidation of cyclohexane to cyclohexanol with 35.61% yield and cyclohexanone with 7.74% yield.  相似文献   

3.

Abstract  

Azo linked Schiff-base[L] complexes of Mn(II)(1), Cu(II)(2) and Co(II)(3) obtained by template method, in the reaction of 4-(benzeneazo) salicylaldehyde with 1,2-propanediamine in the present of metal acetate, respectively. Complexes are used as catalyst for oxidation of cyclohexene with tert-butylhydroperoxide (TBHP); oxidation of cyclohexene catalyzed by these complexes gave 2-cyclohexene-1-one and 2-cyclohexene-1-ol as major products. Conversion of cyclohexene achieved was 95–100% with (1), (2) and (3), with selectivity of 57, 92 and 100% for 2-cyclohexene-1-one, respectively. The encapsulated Cu(II) complex (Cu–NaY) catalyzes the oxidation of cyclohexene using TBHP as oxidant in good yield. (Cu–NaY) under optimized reaction condition gave three reaction products. A maximum of 100% conversion of cyclohexene has been achieved where selectivity of 2-cyclohexene-1-one was 83%.  相似文献   

4.
Results are reported for the molar conductivities at 25°C of N,N—dimethylacetamide (DMA) solutions of Bu4NBF4 and Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) tetrafluoroborates. The limiting molar conductivities of [M(DMA)6]2+ (M  MN, Co, Ni, Cu, Zn) and BF?4, as well as association constants for Co(BF4)2 in DMA solutions have been calculated. The slight differences between conductometric curves of different metal ions are discussed.  相似文献   

5.
Chelate polymers of Cu(II), Ni(II) and Co(II) with bis-oxime of 5,5′-methylene bis(salicylaldehyde) have been prepared. The square-planar structure of the complexes was determined on the basis of infrared and electronic spectral measurements in conjunction with magnetic susceptibility measurements. The thermal stability of the chelates, obtained from the TG thermograms has the following order: Co(II) and Ni(II) chelates are found to increase their coordination number by interaction with pyridine at right angles to the plane of the parent molecule. The resulting complex is found to have octahedral structure. The ligand-field and nephelauxetic parameters have been determined from the spectra, using ligand-field theory of spin-allowed transitions which are found consistent with six-coordinate structure for these adducts.  相似文献   

6.
Schiff bases were obtained by condensation of 2-amino-l,3,4-thiadiazole with 5-substituted-salicylaldehydes which were further used to obtain complexes of the type [M(L)(2)]Cl(2), where M=Co(II), Cu(II), Ni(II) or Zn(II). The new compounds described here have been characterized by physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of these Schiff bases increased upon chelation/complexation, against the tested bacterial species, opening new aproaches in the fight against antibiotic resistant strains.  相似文献   

7.
We studied the reaction between urea and formaldehyde with the purpose of preparing new polychelates of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. These compounds were characterized by elemental analysis, IR spectroscopy, 1H‐NMR, electronic spectroscopy, thermogravimetric analysis (TGA), and molar conductance measurements. The percentage of metal in all of the polychelates was found to be consistent with 1:1.5 (metal/ligand) stoichiometry. The thermal behaviors of these coordination polymers were studied by TGA in a nitrogen atmosphere up to 750°C. The TGA results reveal that the complexes had higher thermal‐resistance properties compared to the common urea–formaldehyde resin. The molar conductivity and magnetic susceptibility measurements of the synthesized polychelates confirmed the geometry of the complexes. The antibacterial activity of the polychelates was also investigated with agar diffusion methods. The antibacterial activity of these polychelates was found to be reasonably good compared with standard drugs, namely, ciprofloxacin, ampicillin, and kanamycin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 928–936, 2006  相似文献   

8.
SUMMARY Polychelates were obtained by addition of an aqueous solution of the poly(acrylic acid-co-acrylamide) to an aqueous solution of Cu(II), Co(II), and Ni(II). All the polychelates were insoluble in water and in common organic solvents. The polychelates were characterized by elemental analysis, FT-IR spectroscopy thermogravimetry, and showed tetrahedral arrangement for Co(II) and Ni(II). Magnetic and conductivity studies for all the polychelates were also carried out. The poly(acrylic acid-co-acrylamide) behaved as semiconductor. Received: 25 July 1997/Revised version: 1 December 1997/Accepted: 5 December 1997  相似文献   

9.
Poly(vinyl chloride) (PVC) has been reacted with dimethylglyoxime (DMG) in THF to form the PVC–DMG comples, which has been characterized by spectroscopic and elemental analyses. The latter indicate that there is one DMG moiety anchored on the PVC chain by displacing every 12th Cl atom in the chain. PVC–DMG has further been reacted with alcoholic solutions of Co(II), Ni(II), and Cu(II) to form the intensely colored PVC–DMG–M(II) complexes. The structures of these complexes have been analyzed by elemental and IR spectral analyses. The overall thermal stability of PVC–DMG–M(II) increases in the order: PVC < PVC–DMG–Cu(II) < PVC–DMG–Ni(II) < PVC–DMG–Co(II). The electrical conductivities are also significantly enhanced in the same order. The permittivities of these complexes are high relative to PVC at low frequency falling gradually with increasing frequency and the dielectric loss-frequency behavior is very broad.  相似文献   

10.
It has been evidenced that microcrystalline chitosan (MCCh) with a determined (by the potentiometric method in nonaqueous medium) degree of deacetylation of 0.87 acts as a polymeric chelating agent with cobalt(II) and zinc(II). The predomination of hydrolytic reactions, in the case of copper(II) ions, has been attributed to a change in crystalline character of the ligand. The protolytic reactions have been studied using the Katchalsky–Spitnik equation. The pH profiles have been shown for Co(II)–MCCh and Zn(II)–MCCh systems and the corresponding equilibrium constants have been determined as well. Both the amino and hydroxyl groups are involved in Co2+ complexation, whereas for Zn2+, the complexes are formed only via amino nitrogen. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Totally six dinuclear complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) of calix[4]arene derivatized with two pendants possessing terminal –COOH functions at two of its alternate phenolic –OH groups were synthesized for the first time and were well characterized.  相似文献   

12.
Some Co(II), Cu(II), Ni(II) and Zn(II) complexes of antibacterial drug cephradine have been prepared and characterized by their physical, spectral and analytical data. Cephradine acts as bidentate and the complexes have compositions, [M(L)(2)X(2)] where [M = Co(II), Ni(II) and Zn(II), L = cephradine and X = Cl(2)] showing octahedral geometry, and [M(L)(2)] where [M = Cu(II), L = cephradine] showing square planar geometry. In order to evaluate the effect of metal ions upon chelation, eephradine and its complexes have been screened for their antibacterial activity against bacterial strains, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

13.
Complexes of type [M(SAH)(OH2)], where M is Mn(II),Co(II),Ni(II) and Cu(II), and SAH is the Schiff-base formed by condensation of salicylaldehyde (2 equiv.) and hydrazine (1 equiv.), bis(salicylaldiminato)hydrazone, or “2-({(z)-2-[(E)-1-(2-hydroxyphenyl)methylidene]hydrazono}methyl)phenol” have been prepared and characterized by elemental analysis, IR, UV–vis spectroscopy, conductometric, small area X-ray photoelectron spectroscopy and magnetic measurements. Elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The results indicate that the Schiff-base ligand coordinates through one azomethine nitrogen and two phenolic oxygen to the metal ions. Conductance measurements suggest the non-electrolytic nature of the complexes. The atomic concentration of the complexes showed the ratio of M:N:O = 1:2:3, that indicates that a water molecule was in the complex. Alumina-supported complexes “[M(SAH)OH2]-Al2O3” catalyze the oxidation of cyclohexene with tert-butylhydroperoxide (TBHP). The major products of the reaction were 2-cyclohexene-1-ol, 2-cyclohexene-1-one and 2-cyclohexene-1-(tert-butylperoxy). The influence of solvent on the oxidation reaction has been studied. [M(SAH)OH2]-Al2O3 shows significantly higher catalytic activity than other alumina-supported complexes. These catalysts can also be reused in the oxidation of cyclohexene several times. The new materials “[M(SAH)OH2]-Al2O3” were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV–vis, XRD, DRS).  相似文献   

14.
Summary The parent polymer, poly(allylamine) as ligand polymer was employed to synthesize polychelates of heavy metal ions. The functional poly(allylamine) and its Ni(II), Co(II) and Cu(II) metal chelates were characterized by elemental analysis, FT-IR spectroscopy, TGA, and SEM. For the polychelates magnetic and conductivimetry studies were also carried out.  相似文献   

15.
Poly[5,5??-methylene-bis(2-hydroxybenzaldehyde)1,2-phenylenediimine] resin was prepared and characterized by employing elemental, thermal analysis, FTIR, and UV?Cvisible spectroscopy. The metal uptake behavior of synthesized polymer towards Cu(II), Co(II), Ni(II), Fe(III) and Cd(II) ions was investigated and optimized with respect to pH, shaking speed, and equilibration time. The sorption data of all these metal ions followed Langmuir, Freundlich, and Dubinin?CRadushkevich isotherms. The Freundlich parameters were computed 1/n?=?0.31?±?0.02, 0.3091?±?0.02, 0.3201?±?0.05, 0.368?±?0.04, and 0.23?±?0.01, A?=?3.4?±?0.03, 4.31?±?0.02, 4.683?±?0.01, 5.43?±?0.03, and 2.8?±?0.05?mmol?g?1 for Cu(II), Co(II), Ni(II), Fe(III), and Cd(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantity (??H) in the range of 36.72?C53.21?kJ/mol. Using kinetic equations (Morris?CWeber and Lagergren equations), values of intraparticle transport and the first-order rate constant was computed for all the five metals ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination by atomic absorption spectrometer. It was found that the adsorption capacity values for metal-ion intake followed the following order: Cd(II)?>?Co(II)?>?Fe(III)?>?Ni(II)?>?Cu(II).  相似文献   

16.
SUMMARY Polychelates of poly(maleic acid-co-olefin) with Cu(II), Co(II), Ni(II), and Zn(II) metal ions are synthesized. These compounds are characterized by FT IR, UV-vis spectroscopy, and thermal analysis. The electrical conductivity measurements are carried out. These demonstrate that at temperature close to 130°C the electrical conductivity increased to values near to the semiconductor range. The PM3 calculations are also carried to study the geometry of the polychelates. Received: 1 November 2000/Revised version: 20 March 2001/Accepted: 21 March 2001  相似文献   

17.
18.
The synthesis, characterization and coordination aspects of the title polymer ligands are reported. The polymeric chelates were prepared by polycondensations of transition metal ions (M) with a poly(Schiff's base) (L). The analytical data propose a (ML)n formula for the chelates. All the polychelates are stable and insoluble in common organic solvents. The geometry around the central metal ion in each chelate is proposed on the basis of measurements of magnetic susceptibilities and UV reflectance spectra. The ligand field splitting parameters 10 Dq, the interelectronic repulsion parameter B, the nephelauxetric parameter β and ligand field splitting energies (L.F.S.E.) have been calculated for Ni(II) and Co(II) chelates. All chelates are resistant to moderately concentrated acids and dilute alkalies at ambient temperature. They exhibit thermal stabilities to varying degrees. IR spectra show that the ligand usually coordinates via the carbonyl oxygen (C=O) and the phenolic OH with replacement of hydrogen by metal ions.  相似文献   

19.
Cross-linked magnetic chitosan–diacetylmonoxime Schiff’s base resin (CSMO) was prepared for adsorption of metal ions. CSMO obtained was investigated by means of scanning electron microscope (SEM), FTIR, 1H NMR, wide-angle X-ray diffraction (WAXRD), magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of cross-linked magnetic CSMO resin toward Cu2+, Co2+ and Ni2+ ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 95 ± 4, 60 ± 1.5, and 47 ± 1.5 mg/g for Cu2+, Co2+ and Ni2+ ions, respectively. Cross-linked magnetic CSMO displayed higher adsorption capacity for Cu2+ in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded cross-linked magnetic CSMO were regenerated with an efficiency of greater than 84% using 0.01–0.1 M ethylendiamine tetraacetic acid (EDTA).  相似文献   

20.
Transition metal (M = Mn(II), Co(II), Ni(II) and Cu(II)) complexes with pentadendate Schiff-base ligand; N,N′-bis(salicylidene)-2,6-pyridinediaminato, H2 [sal-2,6-py]; was entrapped in the nanocavity of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of bis(salicylaldiminato)metal(II); [M(sal)2]-NaY; in the supercages of the zeolite, and (ii) in situ Schiff condensation of the metal(II) precursor complex with the corresponding 2,6-pyridinediamine; [M(sal-2,6-py)]-NaY. The new materials were characterised by several techniques: chemical analysis, spectroscopic methods (DRS, BET, FTIR and UV/Vis), conductometric and magnetic measurements. Analysis of the data indicates that the M(II) complexes are encapsulated in the nanodimensional pores of zeolite-Y and exhibit different from those of the free complexes, which can arise from distortions caused by steric effects due to the presence of sodium cations, or from interactions with the zeolite matrix. The Host–Guest Nanocomposite Materials (HGNM); [M(sal-2,6-py)]-NaY; catalyzes the oxidation of cyclohexene with tert-butylhydroperoxide (TBHP). Oxidation of cyclohexene with HGNM gave 2-cyclohexene-1-one, 2-cyclohexene-1-ol and 1-(tert-butylperoxy)-2-cyclohexene. [Mn(sal-2,6-py)]-NaY shows significantly higher catalytic activity than other catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号