首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Low cost C/C–SiC composites were prepared by alloyed reactive melt infiltration. Effects of the density of C/C preforms on mechanical properties and microstructure of the C/C–SiC composites are reviewed. The results show that with increasing the density of C/C preforms, the flexural strength of the resulting composites increases, while the density of the composites decreases. The flexural strength can reach 341 MPa for the composite produced from the C/C preform of 1·3 g cm?3. The phases in the composites produced from low density C/C preforms are Si, SiC, ZrSi2 and carbon, while no Si phase is found in the composites with high density C/C preforms. Furthermore, the mechanism of the microstructure evolution of the C/C–SiC composites is proposed.  相似文献   

2.
A high-strength SiC composite with SiC whiskers (SiCw) as reinforcement has been fabricated by liquid silicon infiltration (LSI) using pyrolyzed rice husks (RHs) as raw material. RHs were coked and pyrolyzed subsequently at high temperature to obtain a mixture containing SiC whiskers, particles, and amorphous carbon. The pyrolyzed RHs were then milled and modeled to preforms, which were then used to fabricate biomorphic SiCw/SiC–Si composites by liquid silicon infiltration at 1,450, 1,550, and 1,600 °C, respectively. Dense composite with a density of 3.0 g cm−3 was obtained at the infiltration temperature of 1,550 °C, which possesses superior mechanical properties compared with commercial reaction-sintered SiC (RS-SiC). The Vickers hardness, flexure strength, elastic modulus, and fracture toughness of the biomorphic SiCw/SiC–Si composite were 18.8 ± 0.6 GPa, 354 ± 2 GPa, 450 ± 40 MPa, and 3.5 ± 0.3 MPa m1/2, respectively. Whereas the composites obtained at the other two infiltration temperatures contain unreacted carbon and show lower mechanical properties. The high flexure strength of the biomorphic composite infiltrated at 1,550 °C is attributed to the dense structure and the reinforcement of the SiC whiskers. In addition, the fracture mechanism of the composite is also discussed.  相似文献   

3.
利用三维编织炭纤维预制件通过先驱体浸渍裂解法制备C/SiC复合材料。研究了热解碳(PyC)/SiC界面相对复合材料的微观结构和力学性能的影响。弯曲性能通过三点弯曲法测试,复合材料的断口和抛光面通过扫描电镜观察。结果表明:通过等温化学气相沉积法在纤维表面沉积PyC/SiC界面相以后,复合材料的三点抗弯强度从46MPa提高到247MPa。沉积界面的复合材料断口有明显的纤维拔出现象,纤维与基体之间的结合强度适当,起到了增韧作用;而未沉积界面相复合材料的断口光滑、平整,几乎没有纤维拔出,纤维在热解过程中受到严重的化学损伤,性能下降严重,材料表现为典型的脆性断裂。  相似文献   

4.
Biotemplating—a new concept for preparation of ceramic composite materials with biomorphic microstructures will be described. Biological carbon preforms (CB‐templates) were derived from different wood structures by high‐temperature pyrolysis at temperatures between 800 and 1800 °C and used as templates for infiltration with gaseous or liquid Si to form SiC‐ and SiSiC‐ceramics. During high‐temperature processing, the microstructural details of the bioorganic preforms were retained. Cellular ceramic composites with unidirectional porous morphologies and anisotrophic mechanical properties were obtained. The cellular composites show low density, but high specific strength and excellent high temperature stability.  相似文献   

5.
基于熔融Si浸渗法制备出较致密的SiC/TiB2复合材料, 并研究了坯体成形压力对SiC/TiB2复合材料致密度、相组成、显微组织和力学性能的影响。实验结果表明, 复合材料由TiB2、SiC和Si相组成。SiC/TiB2复合材料的显微组织特征为: TiB2相和SiC相均匀分布, 游离Si填充在TiB2相和SiC相的空隙处, 且形成了连续相。随成形压力的增大, 复合材料中游离Si含量降低, TiB2颗粒尺寸减小, 复合材料的力学性能先增加后降低。坯体最佳成形压力为200 MPa, 对应SiC/TiB2复合材料的体积密度、开口气孔率、抗弯强度、断裂韧性和维氏硬度分别为3.63 g/cm3、0.90%、(354±16) MPa、(6.8±0.2) MPa·m1/2和(21.0±1.1) GPa。  相似文献   

6.
采用浆料浸渗结合液硅渗透法原位生成高韧性Ti3SiC2基体, 制备Ti3SiC2改性C/C-SiC复合材料。研究了TiC颗粒的引入对熔融Si浸渗效果的影响, 分析了Ti3SiC2改性C/C-SiC复合材料的微结构和力学性能。实验结果表明: TiC与熔融Si反应生成Ti3SiC2是可行的, 而且C的存在更有利于生成Ti3SiC2; 在含TiC颗粒的C/C预制体孔隙(平均孔径22.3 μm)内, 熔融Si的渗透深度1 min内可达10.8 cm; Ti3SiC2取代残余Si后提高了 C/C-SiC复合材料的力学性能, C/C-SiC-Ti3SiC2复合材料的弯曲强度达203 MPa, 断裂韧性达到8.8 MPa·m1/2; 对于厚度为20 mm的试样, 不同渗透深度处材料均具有相近的相成分、 密度和力学性能, 无明显微结构梯度存在, 表明所采用的浆料浸渗结合液硅渗透工艺适用于制备厚壁Ti3SiC2改性C/C-SiC复合材料构件。   相似文献   

7.
通过理论计算,探究C_f/SiC复合材料密度与C/C坯体密度的相关性;而后采用碳纤维布叠层制作2D C/C坯体,经先驱体浸渍裂解工艺增密,制得密度分别为0.98、1.06、1.12g/cm~3的C/C坯体,通过液相渗硅法反应合成2DC_f/SiC复合材料,探究C/C坯体密度对其结构和性能的影响。与理论计算结果来对比。研究结果表明:试验结果与理论数学计算结果基本一致。随着C/C坯体密度的增加,C_f/SiC复合材料的密度出现先上升后下降的趋势,当C/C坯体密度大于0.98g/cm~3后,复合材料的弯曲强度随着C/C坯体密度的增加而降低,C/C坯体密度为0.98g/cm~3时,2DC_f/SiC复合材料结构和性能较优。  相似文献   

8.
Three-dimensional (3D) silicon carbide (SiC) matrix composites reinforced with KD-I SiC fibres were fabricated by precursor impregnation and pyrolysis (PIP) process. The fibre-matrix interfaces were tailored by pre-coating the as-received KD-I SiC fibres with PyC layers of different thicknesses or a layer of SiC. Interfacial characteristics and their effects on the composite mechanical properties were evaluated. The results indicate that the composite reinforced with as-received fibre possessed an interfacial shear strength of 72.1 MPa while the composite reinforced with SiC layer coated fibres had a much higher interfacial shear strength of 135.2 MPa. However, both composites showed inferior flexural strength and fracture toughness. With optimised PyC coating thickness, the interface coating led to much improved mechanical properties, i.e. a flexural strength of 420.6 MPa was achieved when the interlayer thickness is 0.1 μm, and a fracture toughness of 23.1 MPa m1/2 was obtained for the interlayer thickness of 0.53 μm. In addition, the composites prepared by the PIP process exhibited superior mechanical properties over the composites prepared by the chemical vapour infiltration and vapour silicon infiltration (CVI-VSI) process.  相似文献   

9.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

10.
对含有几种典型界面结构和SiC纳米线的CVI-SiC/SiC复合材料的弯曲性能和断裂韧性进行了比较研究. 研究表明: 界面涂层对SiC/SiC的力学性能至关重要, 120nm厚的碳界面涂层使材料的强度与韧性都增加一倍; 在用140nm厚的SiC层将该碳层分为更薄的两层, 形成C/SiC/C多层界面涂层时, 材料的强度没有明显的变化, 而断裂韧性则略有提高. 对基体中弥散分布有SiC纳米线的SiC/SiC的力学性能研究表明, SiC纳米线具有非常高的强化效率, 使SiC/SiC复合材料具有更高的强度和韧性.  相似文献   

11.
The development of a Cf/(Mo, Ti)Si2–SiC composite using melt infiltration technique was investigated. C/C preforms and also Cf-felts were infiltrated with an alloyed melt of Si, Ti and MoSi2. The amount of each element was selected so that the melting point of the alloy was lower than 1600 °C. It was then possible to prevent the melt from reacting heavily with the carbon fibers and preserve their reinforcing effect in case of the C/C preforms. After infiltration no residual silicon could be detected in the matrix of the infiltrated C/C composites. The infiltrated C/C samples reached a maximum bending strength of 210 MPa at room temperature. At 1600 °C there is even an increase in their bending strength to 250 MPa. Infiltrated felts showed monolithic and brittle characteristics. Their bending strength at room temperature was not higher than 150 MPa. Because of softening of the residual silicon, the strength of the infiltrated felts was reduced at high temperatures. The felt samples which were infiltrated with an alloyed melt showed higher mechanical strength than pure silicon infiltrated felts both at room temperature and at 1600 °C.  相似文献   

12.
Silicon carbide (SiC) composites are fabricated by selective laser sintering (SLS) combined with reactive melt infiltration (RMI) using SiC powder mixed with various contents (0–32 vol%) of chopped carbon fiber (CCF) as reinforcement phase and carbon source. The introduction of an appropriate amount of CCF can reduce the shrinkage and step effect caused by slicing, improving the forming quality of the CCF/SiC preforms after pyrolysis. Meanwhile, as a carbon resource, CCF can react with molten silicon to form the β-SiC, improving the mechanical properties of CCF/SiC composites. The result shows that the CCF/SiC powder shows excellent fluidity, and the angle of repose of the CCF/SiC powder is 32–40° when the proportion of CCF is less than 24 vol%. CCF/SiC preforms shrinkage is lower than 1.74% and 1.94% along the nonadditive and additive manufacturing directions, respectively. Compared without CCF, the bending strength and fracture toughness of the CCF/SiC composites with 8 vol% CCF improve from 137.9 MPa and 2.69 MPa m1/2 to 177.1 MPa and 3.10 MPa m1/2, respectively. This study is believed to provide a new strategy for additive manufacturing of high-performance CCF/SiC composites with high CCF content by SLS.  相似文献   

13.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

14.
Multi-walled carbon nanotube (MWNT)-reinforced carbon fiber/silicon carbide (Cf/SiC) composites were prepared using a polymer infiltration and pyrolysis (PIP) process. The MWNTs used in this study were modified using a chemical treatment. The MWNTs were found to be well dispersed in the matrix after ultrasonic dispersion, and the mechanical properties of the Cf/SiC composite were significantly improved by the addition of MWNTs. The addition of 1.5 wt.% of MWNTs to the Cf/SiC composite led to a 29.7% increase in the flexural strength, and a 27.9% increase in the fracture toughness.  相似文献   

15.
碳纤维增强的纳米碳化硅陶瓷基复合材料力学性能优良,且具有一定的生物相容性,因此可作为一种新型的可取代钛合金的全尺寸整体人工骨骼。研究了具有三向正交结构的T300和M30碳纤维预制体对C/SiC复合材料制备过程和抗弯强度的影响规律。以聚碳硅烷为先驱体,以二乙烯基苯为溶剂和交连剂,采用聚合物浸渍热解法制备了C/SiC复合材料,采用阿基米德排水法测量其密度和气孔率,采用三点抗弯法测量其抗弯强度。M30 C/SiC抗弯强度比T300 C/SiC高6.7%,表明碳纤维弹性模量对复合材料基体开裂强度有显著影响,并通过增加纤维径向强度以及承担载荷的比例提高了复合材料的断裂强度。   相似文献   

16.
Nicalon-fibre-reinforced SiC composites were fabricated by combining polymer solution infiltration (PSI) and chemical vapour infiltration (CVI). Effect of multilayer coating on mechanical properties of the composites was investigated. The coatings consisted of chemically vapour deposited (CVD) C and SiC and were designed to enhance fibre pull-out in the composites. It was found that the flexural strength and fracture toughness of the composites were increased with the number of coating layers and was a maximum for 7 coating layers which consisted of C/SiC/C/SiC/C/SiC/C. Typical flexural strength and fracture toughness of the composites were 300 MPa and 14.5 MPa m1/2, respectively.  相似文献   

17.
To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers.  相似文献   

18.
Silica carbide modified carbon cloth laminated C–C composites have been successfully joined to lithium–aluminum–silicate (LAS) glass–ceramics using magnesium–aluminum–silicate (MAS) glass–ceramics as interlayer by vacuum hot-press technique. The microstructure, mechanical properties and fracture mechanism of C–C/LAS composite joints were investigated. SiC coating modified the wettability between C–C composites and LAS glass–ceramics. Three continuous and homogenous interfaces (i.e. C–C/SiC, SiC/MAS and MAS/LAS) were formed by element interdiffusions and chemical reactions, which lead to a smooth transition from C–C composites to LAS glass–ceramics. The C–C/LAS joints have superior flexural property with a quasi-ductile behavior. The average flexural strength of C–C/LAS joints can be up to 140.26 MPa and 160.02 MPa at 25 °C and 800 °C, respectively. The average shear strength of C–C/LAS joints achieves 21.01 MPa and the joints are apt to fracture along the SiC/MAS interface. The high retention of mechanical properties at 800 °C makes the joints to be potentially used in a broad temperature range as structural components.  相似文献   

19.
热模压辅助先驱体浸渍裂解制备Cf/SiC复合材料研究   总被引:6,自引:2,他引:4       下载免费PDF全文
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-B Cf/SiC复合材料,研究了热模压辅助对3D-B Cf/SiC复合材料致密度和力学性能的影响。结果表明:先驱体浸渍裂解制备陶瓷基复合材料第一次浸渍后引入高温热模压工艺可以改善材料微观结构,显著提高材料的致密度和力学性能。其中1600℃,10MPa,1h下热模压辅助先驱体浸渍裂解6次制备的3D-B Cf/SiC复合材料的密度为1.79g/cm3,弯曲强度高达672MPa,断裂韧性达18.9MPa·m1/2,剪切强度接近50MPa,且具有较好的抗热震性和高温抗氧化性。  相似文献   

20.
《Composites Part A》2000,31(2):133-142
Ultrasonic drilling of two-dimensional carbon fiber-reinforced silicon carbide(C/SiC) composites was investigated in this study. The composites were made through a polymer pyrolysis route. X-ray diffraction was adopted to examine the formation of crystalline structure in the matrix of the fabricated composites. Density and porosity, and flexural strength were measured to study the densification efficiency and the mechanical properties, respectively, of the C/SiC composites fabricated under various conditions. The fracture morphologies were also examined by scanning electron microscopy to investigate the fracture behavior of the composites under flexural test. The effects of various parameters of ultrasonic drilling, including abrasives, volume ratio, electric current and down-force, on the material removal rate, hole clearance, edge quality and tool wear are presented and discussed. Optimal operating conditions are identified. In comparison with other feasible machining processes, ultrasonic drilling for this composite material possesses advantages concerning machinability and cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号