首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Mechanical Science and Technology - This article presents a solar air heater channel artificially made rough with a transverse roughness in square-wave shape, investigated for the...  相似文献   

2.
Journal of Mechanical Science and Technology - The paper presents the effect of the Reynolds number, relative roughness height and relative roughness pitch on the heat transfer and pressure loss in...  相似文献   

3.
The local heat transfer and pressure drop of turbulent flows developed in stationary ribbed rectangular divergent channels are experimentally investigated. The rectangular divergent channels with a one sided ribbed surface only have inclination angles of 0.72° and 1.43°. The ribbed wall is manufactured with a fixed rib height (e) of 10 mm and rib spacing (p) to height (e) ratio of 10. The measurement was conducted within a Reynolds number range of 15,000 to 89,000. The local heat transfer characteristics of the rectangular divergent channels are quite different from those of the square straight channels because of the streamwise flow deceleration. The thermal performances of the ribbed rectangular divergent channels are compared with those of the ribbed square straight channels under three constraints: identical mass flow rate, identical pumping power, and identical pressure drop. The comparison shows that between the two channels D1 (D ho /D hi = 1.16) and D2 (D ho /D hi = 1.49), the divergent channel D2 (D ho /D hi = 1.49) has the higher thermal performance at identical mass flow rate, and the divergent channel D1 (D ho /D hi = 1.16) has the higher thermal performance under the constraints of identical pumping power and static pressure drop.  相似文献   

4.
In order to investigate the characteristics of flow and heat transfer rate in a Helically-finned tub (HFT), we used continuity, momentum and energy equations under a steady, three-dimensional and incompressible fluid flow assumptions. For the performance metrics, we considered the Darcy friction factor, Colburn j-factor, volume goodness factor and area goodness factor of the HFT. We could also evaluate the effect of geometry parameters on the results of local pressure coefficient, fluid vorticity and Nusselt number of the HFT. We carried out the CFD calculation for a range of laminar flow (Re = 100) and turbulent flow (Re = 2000 and 10000). In a laminar and turbulent flow regime, the friction factor increases with increasing the each geometric parameter. While the Colburn j-factor decreases as increasing these geometric parameters. Consequently, the thermal performance of HFT is poorer than that of single straight circular tube type because of having a small volume and area goodness factor as increasing the Reynolds numbers.  相似文献   

5.
An investigation on the fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one-side roughened by five different shapes. The effects of rib shape geometries as well as Reynolds numbers are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed ate/De=0.0476,P/e=8, andW/H=2.33, respectively. To understand the characteristics of heat transfer enhancements, the friction factors are also measured. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones.  相似文献   

6.

The heat transfer can be improved by providing artificial roughness on absorber plate of the solar air heat. Many studies are available on circular, semi-circular, triangular and rectangular rib roughened solar air heater. But in present study heat transfer enhancement by providing elliptical ribs on absorber plate was analyzed by developing CFD code on non-commercial ANSYS (Fluent) 12.1 software. The simulations were performed on 2-D CFD model and analysis was carried out to study the effect of relative roughness width, relative roughness height and relative roughness pitch on heat transfer and friction factor. The Reynolds number range from 4000 to 15000 and turbulence phenomena is modeled by using Reynolds-average Navier-Stokes equations (RANS). The mathematical modeling is validated and compared with available results. The strong vortex formation takes place in the main stream flow because of elliptical roughness, which improved heat transfer augmentation in the solar air heater. The local turbulence kinetic energy strongly influenced by orientation of the elliptical ribs. The value of average Nusselt number increases by increasing relative roughness height but it decreases with the increase of relative roughness width and relative roughness pitch. The rib width has significant effects on heat transfer enhancement and maximum Nusselt number is observed for relatively small roughness width (i.e., 0.5) among the considered range of 0.5 mm to 2.0 mm. The maximum value of Nusselt number and friction factor is observed for relative roughness width of 0.5, relative roughness height of 0.045, and relative roughness pitch of 6.

  相似文献   

7.
This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90° ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300°C to 500°C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-?, the renormalized group (RNG) k-?, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.  相似文献   

8.
Theoretical postulates of heat dynamics and modelling of friction and wear are formulated based on a system of equations including basic dependences of friction behaviour on load, velocity, time and temperature.  相似文献   

9.
Experimental investigations were conducted to study forced convection of fully developed turbulent flows in horizontal equilateral triangular ducts with different surface roughness pitch ratios (P/e) of 4, 8, and 16 on one side. The duct’s bottom wall was heated uniformly and the other surfaces were thermally insulated. To understand heat transfer enhancement mechanism, heat transfer rates were measured. Smooth triangular ducts were also tested for benchmark purposes. The results were compared with previous results for similarly configured channels, at which they were roughened by regularly spaced transverse ribs in the rectangular and circular channels.  相似文献   

10.
根据流体动力学和计算传热学理论,建立了折流板管壳式换热器计算模型,运用CFD技术对换热器壳程流体的流动与传热问题进行了三维数值模拟,得到了不同壳程进口雷诺数Re条件下换热器壳程流体的流场和温度场。对数值模拟结果进行分析,以总传热系数h,壳程总压降Δp以及单位压力损失下的传热系数h/Δp作为换热器性能的衡量标准,分析了不同折流板间距和不同折流板圆缺高度时管壳式换热器壳程总传热系数h、总压降Δp以及h/Δp随壳程进口雷诺数的变化规律。结果表明:随着壳程进口流速的增大,换热器壳程总传热系数和总压降增大、h/Δp减小;在壳程流体流量不变的情况下,结合单位压力损失下的传热系数h/Δp,适当减小折流板间距或减小折流板圆缺高度,可提高换热器的换热性能。  相似文献   

11.
A computational fluid dynamics (CFD) simulation for analyzing fluid flow patterns in a plasma spray gun is presented in this study. It is coupled with a heat transfer simulation of the plasma spray gun. Based on CFD and heat transfer theory, the numerical model of the nozzle in the plasma spray gun is developed, and the coupled simulation of the flow fluid and heat transfer is carried out with the semi-implicit method for pressure-linked equations (SIMPLE) method. Local turbulence, which will lead to appearance of a static-water region, is found at the front corner of the cooling channel in the nozzle. The locations insufficiently cooled are found in the wall near the heat source and in the gasket in the rear of the nozzle. Then, cooling processes with different parameters of cooling water are analyzed. The optimal velocity and direction of cooling water, which efficiently cool the nozzle and improve the service life of the plasma jet, are obtained .  相似文献   

12.
A computational fluid dynamics (CFD) simulation for analyzing fluid flow patterns in a plasma spray gun is presented in this study. It is coupled with a heat transfer simulation of the plasma spray gun. Based on CFD and heat transfer theory, the numerical model of the nozzle in the plasma spray gun is developed, and the coupled simulation of the flow fluid and heat transfer is carried out with the semi-implicit method for pressure-linked equations (SIMPLE) method. Local turbulence, which will lead to appearance of a static-water region, is found at the front corner of the cooling channel in the nozzle. The locations insufficiently cooled are found in the wall near the heat source and in the gasket in the rear of the nozzle. Then, cooling processes with different parameters of cooling water are analyzed. The optimal velocity and direction of cooling water, which efficiently cool the nozzle and improve the service life of the plasma jet, are obtained .  相似文献   

13.
In this study, the heat transfer and friction factor of a shell and helically coiled tube heat exchanger using Al2O3 / water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were tested. The test was conducted under laminar flow condition at 5100 < Rei < 8700. It is found that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number are 24%, 25% and 28%, respectively, higher than water at 0.8% particle volume concentration of nanofluid. It is observed that the presence of nanoparticles further intensify the formation of secondary flow and proper mixing of fluid when nanofluid passes through the helically coiled tube. Apart from further flow intensification, higher thermal conductivity of nanofluid and random movement of nanoparticles contribute to the enhanced heat transfer coefficient. Also found that the friction factor increases over particle volume concentration and this is due to increased nanofluid viscosity while increasing particle volume concentration.  相似文献   

14.
The characteristics of heat transfer and pressure drop for fully developed turbulent flow in a tube with circumferential fins and circular disks were experimentally studied. The various spacing and sizes of circumferential fins and circular disks were selected as design parameters, while the effects of these parameters on heat transfer enhancement and pressure drop were investigated. In order to quantify the effect of heat transfer enhancement and the increase of pressure drop due to the fins and disks in a tube, the Nusselt numbers and the friction factors for various configurations and operating conditions were compared to those for a corresponding smooth tube. The results showed that the heat transfer rate was significantly enhanced by increasing the height of circumferential fins and decreasing the pitch of circumferential fins. On the other hand, the influence of the disk size and the fin-disk spacing were not significant. Based on the experimental results, a correlation for estimating the Nusselt number was suggested.  相似文献   

15.
Hypoplastic left heart syndrome (HLHS) is rare but serious. It is the most common cause of death from heart disease during the first week of life. With surgical repair or a heart transplant, about 70% of children born with HLHS live for at least 5 years. The purpose of this study is to achieve an optimization of the systemic-topulmonary artery shunt. In this study, computational fluid dynamic (CFD) models were used to determine the velocity profile in a systemic-to-pulmonary artery shunt and we suggest a simplified method of calculating the blood mass flow rate in the shunt based on ultrasound systems. We analyzed the flow characteristic variations and Oscillatory Shear Index (OSI) due to the anastomosis angle and changing shunt diameter.  相似文献   

16.
针对空气预热器中传热性能低下的问题,将纵向涡器运用于空气预热器热管内,以烟气为介质,运用计算软件FLUENT进行数值模拟,研究在不同Re数下,涡发生器对管内烟气的传热及流动阻力的影响,比较了不同攻角及翼高与管内半径之比的直角三角翼涡发生器强化换热效果,并与光管的换热系数和阻力系数进行了对比。分析表明,纵向涡发生器能明显提高换热性能,在所研究的纵向涡发生器中,攻角为45°时,涡发生器强化传热效果较好。随着Re数的改变,具有最佳传热效果的涡发生器结构也会有所不同。  相似文献   

17.

We investigated the flow and heat transfer characteristics in a Twisted elliptic tube (TET). The effects of geometry parameters such as the aspect ratio and number of rotations in the TET were analyzed comparatively using three-dimensional (3-D) numerical simulation. We also solved numerically the conservation equations of continuity, momentum, and energy in the TET. Fully developed flow in the TET was modeled using the realizable k-ε turbulence model and steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations. The simulation was performed for Reynolds numbers of 100, 1000 and 10000. The pressure drop and the heat transfer of the TET were assessed in terms of the Darcy friction factor and Colburn j-factor, and overall performance was evaluated using the area and volume goodness factors.

  相似文献   

18.
Journal of Mechanical Science and Technology - Braking system is one of the basic organs to control a car. For many years, the disc brakes have been used in automobiles for safe retardation of the...  相似文献   

19.
Desktop computers have changed to accommodate increasing power, approaching 100 W. Heat dissipation becomes a significant issue in efficiency promotion and stable operation of air-cooled microelectronics and power electronics components and assemblies. Finned heat sinks are commonly used devices for enhancing heat transfer from air-cooled microelectronics and power electronics components and assemblies. The use of finned heat sinks increases the effective surface area for convective heat transfer, reducing the thermal resistance and operating temperatures in air-cooled electronics. The task of selecting the best heat sink for a particular application from the hundreds of configurations available from the various manufacturers can be a formidable task for an engineer. In a typical heat sink design, the objective is to achieve target heat dissipation, while restricting the consumption of valuable resources such as mass, fan power, pressure drop, and space claim. In this research work, preliminary studies have been carried out for the performance improvement of a parallel-plate heat sink considering the various geometric parameters, such as number of fins, fin length, fin height, and base height. The modeling and simulation of the heat sink is carried out with the computational fluid dynamics package. The results are analyzed using analysis of variance and response graphs.  相似文献   

20.
The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000–60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steamcooled gas turbine blade/vane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号