首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ability to determine local electric surface properties with a high resolution is a key issue in many modern industrial applications. In this article, authors will describe low-cost and reliable methods for investigations of electrical surface properties with a nanoscale resolution using a homebuilt modular tunneling/atomic force microscope with a quartz tuning fork as a probe. We will present the architecture of the designed system and the calibration method of the applied sensor. In our work, the usage of the tunneling atomic force microscope in the high-resolution investigations of the surface topography and identification of local spots where the tunneling current is observed will be demonstrated. We will also present current-voltage (I-V) spectroscopy performed on a gold thin film sputtered on silicon substrate and a highly oriented pyrolitic graphite (HOPG) surface, which we obtained in air ambient and at room temperature.  相似文献   

2.
Copper tetra-tert-butyl Phthalocyanine (CuTTBPc) was vacuum deposited onto substrates of hydrophilic glass, hydrophobic silanized-glass, and one layer CuTTBPc LB film. The effects of substrates on the growth behavior and film characteristics of CuTTBPc were studied by atomic force microscopy as well as XRD and dynamic contact angle analyzer. The results show that, in the early growth stage, the island density and coverage ratio of CuTTBPc are small on hydrophilic glass surface. This result is caused from the weak interaction of CuTTBPc molecules to the glass which leads to a small nucleation rate and rougher morphology in the early growth stage. On the contrary, the nucleation rate of CuTTBPc on the silanized-surface is high and thus a much smoother film comprises densely distributed fine-grain clusters was observed. This fact indicates the higher adhesive force of CuTTBPc molecules to the silanized-surface. On the LB film, the CuTTBPc molecules are arranged in aggregative domains which are separately distributed on the glass surface. These domains act as active sites for the nucleation and growth of the later deposition process and thus, high density clusters were found in the early growth stage. The XRD results demonstrate that the film grown on glass has higher degree of crystalline structure than the others which is resulted from the distinction of the initial growth stage.  相似文献   

3.
A thin film of cobalt, copper and Co/Cu multilayers deposited on Si(1 0 0) has been studied by an in situ combination of Auger electron spectroscopy and scanning tunnelling/scanning force microscopy. We show that thickness-dependent Auger peak intensity measurements, taken in situ during deposition of constituents of Co/Cu multilayers, combined with microscopy can bring valuable information about growth type of the system components.  相似文献   

4.
M. Kwoka  L. Ottaviano 《Thin solid films》2007,515(23):8328-8331
In this paper we present the results of Atomic Force Microscopy (AFM) characterisation of the surface morphology of the L-CVD SnO2 thin films prepared by L-CVD technology and studied after exposure to air, dry air oxidation, and ion beam profiling. The L-CVD SnO2 thin films after air exposure have a very smooth surface morphology with an average surface roughness (RMS) smaller than 0.5 nm, and average and maximal grain heights of about 1 and 2 nm, respectively. After dry air oxidation the L-CVD SnO2 thin films exhibit an average surface roughness (RMS), as well as the average and maximal grain height, increased by one order of magnitude. Finally, after the ion beam profiling the L-CVD SnO2 thin films exhibit an evidently disordered structure with a lot of craters. These experiments showed that the L-CVD SnO2 thin films exhibit a very high quality surface morphology, what can be useful for solar cells and gas sensors application.  相似文献   

5.
The growth of thin microwave organosilicon plasma polymers on model zinc surfaces was investigated as a function of the film thickness and the oxygen partial pressure during film deposition. The evolution of the topology of the film was studied by atomic force microscopy (AFM). The nano- and micro-roughness was investigated at the inner and the outer surfaces of the plasma polymers. A special etching procedure was developed to reveal the underside of the plasma polymer and thereby its inner surface. Rough films contained voids at the interface, which reduced the polymer/metal contact area. The increase in oxygen partial pressure led to a smoother film growth with a perfect imitation of the substrate topography at the interface. The chemical structure of the films was determined by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). ToF-SIMS at the outer and the inner surface of the plasma polymers showed that the density of methylsilyl groups increases in the outer surface layer of the plasma polymer and depends on the oxygen partial pressure. The chemical composition of the films could be altered to pure SiO2 without changing the morphology by using oxygen-plasma post-treatment. This was proved by means of IRRAS and AFM. Chemistry and topology of the films were correlated with the apparent water contact angle. It was found that a linear relationship exists between the nanoscopic roughness of the plasma polymer and the static contact angle of water. Superposition of a nanoscopic roughness of the metal surface and the nanoscopic roughness of methylsilyl-rich films led to ultra-hydrophobic films with water contact angles up to 160°.  相似文献   

6.
In this paper we present scanning tunneling microscopy (STM) investigations of gold with 2,2,6,6-Tetramethylpiperidine (TMP) overlayer. During the STM experiments the creation of holes and hills or no changes of the surface were observed depending on the applied bias voltage and polarity. No modifications were observed in the bias range from −0.5 to +0.5 V. The holes were created for the bias voltages greater than +0.5 V and hills for the bias voltages lower than −0.5 V. The observed changes of the surface morphology suggest the presence of electrochemical reaction between the tip and the surface. Additionally, our results suggest that TMP lowers the electrochemical activation energy of gold to +0.5 eV.  相似文献   

7.
The effects of the trimethylgallium flow (14–55 μmol/min) during the deposition of the GaN nucleation layer on the structure and electronic properties of GaN epilayers were examined. X-ray and mobility studies indicate that GaN epilayers, grown using non-optimal trimethylgallium (TMG) flow, result in wide FWHM peak and low electron mobility. On the contrary, an optimal TMG flow during the nucleation layer growth leads to films with superior structural and electronic properties. Atomic force microscopy (AFM) was used to systematically investigate the morphological evolution of as-grown nucleation layers, and the nucleation layers were heated to 1000°C under different TMG flows.  相似文献   

8.
Modification of a glass support with triethoxy propylaminosilane yields an active interface for the assembly of Au colloids. The colloids are imaged by AFM using a low applied load (0.5–0.7 nN). The lateral Au-colloid dimensions, 33±3 nm, deviate from the particle dimensions determined by TEM (19±2 nm) and absorption spectroscopy (15 nm). This deviation is attributed to the intrinsic curvature of the AFM tip. Application of higher loads on the tip (3 nN) results in the sweeping of Au colloids from the monolayer. The Au colloid monolayer is etched in the presence of CN. The etching proceeds by the initial coincidental etching of Au particles followed by the kinetically favored etching of particles at the edges of the etched domains. This provides means for the micro machining and the chemical manipulation of Au colloids of controlled spatial arrangement.  相似文献   

9.
Two different procedures of grafting of polyethyleneterephthalate (PET), modified by plasma treatment, with gold nanoparticles (nanospheres) are studied. In the first procedure the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with gold nanoparticles. In the second one the PET foil was grafted with gold nanoparticles previously coated by the same dithiol. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Gold nanoparticles were characterized by ultraviolet–visible spectroscopy. The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma activated PET and it mediates subsequent grafting of the gold nanoparticles.  相似文献   

10.
The effect of water plasma treatment of both hydrophobic and hydrophilic Si(1 0 0) surfaces has been studied using infrared spectroscopy to monitor the various surface species present. Exposure to a water plasma results in a significant increase in the concentration of H-bonded hydroxyls and hydrides. Both atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) of TiO2 films deposited by atomic layer deposition at 300 °C, show that the morphology of the films is dependent on the nature of the initial surface. XTEM of the early stages of growth showed that coatings on hydrophilic substrates deposited as initially amorphous and continuous films, which crystallised with further growth. However, the hydrophobic substrate produced island growth of small, crystalline grains. AFM images of 23-nm thick films showed that films deposited on hydrophobic and hydrophilic Si consisted of 35–100 and 150–350 nm crystallites, respectively. A film on water plasma treated Si, closely resembled that on the hydrophilic surface, indicating that hydroxyl groups are responsible for directing the film growth.  相似文献   

11.
Au substrate was prepared by Au evaporation on Si(111) surface. Au surface was composed of Au grains with typical diameter of about 50 nm with atomically flat terraces. TiO2 nanostructures were created by electron gun evaporation of Ti while simultaneous dosing of high purity O2 gas. The pressure of oxygen was kept at 5 · 10− 8 mbar and controlled by means of residual gas analyzer (RGA). Scanning tunneling microscopy (STM) images showed that TiO2 nanocrystallites had grown between Au grains in cavities between them. This may suggest that such spots are preferred TiO2 nucleation sites. I-V curves measured above Au showed metallic properties while those measured above TiO2 exhibit energy gap characteristics for semiconducting material.  相似文献   

12.
J. Ball  H.S. Reehal 《Thin solid films》2012,520(7):2467-2473
The Au catalysed, vapour-liquid-solid growth of Si nanowires on Si substrates of different orientations has been studied using electron cyclotron resonance plasma-assisted chemical vapour deposition (ECRCVD). ECRCVD plasma excitation is found to strongly promote wire growth rate and density with wire diameters in excess of 200 nm under the conditions used. Substrate orientation and nanowire density are strongly correlated. This has been studied using multicrystalline as well as single crystal Si substrates. It is suggested that the Gibbs-Thomson effect can account for the behaviour of wire density with orientation. The application of an RF generated, DC self-bias of − 5 V on the substrate during growth strongly enhances wire density without affecting growth rate or diameter. A tentative model for wire growth has been proposed which is based on an initial incubation/crystallisation step, followed by silicon incorporation at the vapour-liquid interface being rate-limiting.  相似文献   

13.
Z.-J. Liu 《Thin solid films》2006,496(2):326-332
A comparative study of the surface growth of solid solution (Ti0.48Al0.52)N thin films sputter-deposited on both smooth Si(100) and rough high-speed-steel (HSS) substrates is presented. It was found that the substrates have a decisive impact on the surface morphology and roughness evolution during film growth. For films deposited on smooth Si(100) substrates, a self-affine surface was observed showing that the roughness increased with time. However, when (Ti0.48Al0.52)N films were deposited on rough HSS substrates, the film surface was no longer self-affine due to the substrate effect and experienced a continuous smoothening during growth. Scaling analyses on (Ti0.48Al0.52)N/Si(100) revealed that the roughness exponent α and the growth exponent β are 0.29 ± 0.03 and 0.97 ± 0.03 respectively, indicating that the growth of (Ti0.48Al0.52)N films can be modeled by a simple linear equation with surface diffusion as the smoothening mechanism and shot noise as the roughening effect. Based on this linear equation, our numerical simulations of the film growth using real substrates as the initial conditions indeed showed roughening on Si(100) but smoothening on HSS substrates, in good agreement with the experimental results. The observed linear surface roughening or smoothening in (Ti0.48Al0.52)N films on different substrates is also discussed and can be considered as a result of the competitive effect between the surface-diffusion-induced decrease in substrate roughness contribution and the noise-driven surface roughening.  相似文献   

14.
Ideally, scanning probe microscopy (SPM) should generate a three-dimensional map of a sample surface such that the result is an exact replication of the actual sample. Any measurement data that result in an image differing from the actual sample surface are artifacts. The chief sources of SPM artifacts are mechanical systems, piezoelectric crystals, electronic scanners, tip-sample interaction, and image processing. For example, choosing the proper SPM probe for a specific sample is only the first step in minimizing probe-related artifacts. In fact, geometrical effects cause the largest number of artifacts. Good quality atomic SPM images can be clearly seen in raw data and should respond appropriately when the scan range or rotation is changed. Because SPM images are often periodic, it is possible for heavily filtered “data” to sometimes be misinterpreted as “atomic resolution images”. This paper presents SPM image studies using a range of materials from hard rough diamond films to soft nanometer smooth polyimide films. The investigation brings out the hidden sources of SPM artifacts for samples with different geometries and physical properties. Ten suggestions are presented which, if implemented/followed, should minimize the number of SPM image artifacts thereby assuring high quality images.  相似文献   

15.
Fluorocarbon (FC) films deposited in continuous wave (cw) and pulsed difluoromethane radio frequency (r.f.) plasmas were characterized using Fourier transform infrared spectroscopy and atomic force microscopy. The effects of varying r.f. power, cw/pulsed discharge mode, and the distance of the substrate from the coil on the deposition rate, film structure, and surface roughness were investigated. These cw and pulsed deposition systems were characterized in-situ by means of optical emission spectroscopy. Emission intensities of Hα, Hβ, H2 and carbon-containing species in the coil region and downstream plasmas as a function of plasma parameters were measured. The hydrogen excitation temperature obtained from the relative emission intensities of Hα and Hβ lines shows a clear dependence on the r.f. power and the substrate position. Correlations between film properties, gas-phase plasma diagnostic data, and film growth processes were discussed. Experimental results indicate that the film growth within the coil region in cw plasmas is controlled by the synergistic effect between energetic ions and low-energy species. The film growth in pulsed and downstream plasmas is controlled by the growth of coalesced nuclei via surface diffusion of adsorbed species, which results in the deposition of FC films with relatively rough surfaces.  相似文献   

16.
用原子力显微镜研究纤维素膜表面形貌和孔径大小及分布   总被引:9,自引:2,他引:9  
介绍了原子力显微镜 (AFM )的测试原理和用于纤维素膜测定的方法 ,测定了几种纤维素膜的表面形貌 .结果表明 :AFM非常适合用于研究纤维素膜表面形貌结构 ;通过分析纤维素膜表面孔径大小和分布 ,可以较好地解释纤维素膜性能的变化  相似文献   

17.
Colin R. Crick 《Thin solid films》2010,518(15):4328-12061
Aerosol assisted deposition of three sets of polymer films based on commercially available resins was achieved on various substrates. The films were characterised using a range of methods, including water contact and slip angle to determine water repellent properties. The aerosol assisted deposition inside the chemical vapour deposition reactor was unique in generating a highly rough superhydrophobic surface with water contact angles up to 170°. During the deposition process, two of the polymers were cured resulting in the development of high surface morphology. It was observed that the polymer that did not cure did not develop such a rough surface resulting in a lower water contact angle (∼ 99°). The superhydrophobic films had a Cassie-Baxter type wetting with water failing to penetrate the surface porosity, water spraying on the surface would bounce off. These films had exceptionally low slide angles of ca 1-2° from the horizontal.  相似文献   

18.
B. X. Yang  Y. Zhu  J. Ahn  H. S. Tan  D. Lu 《Thin solid films》1995,270(1-2):210-214
Textured (100) diamond films have been successfully grown using the plasma-enhanced chemical vapor deposition technique and characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The thickness of such a (100)-oriented diamond film can be as thin as 4 μm, and the just-emerged transitional layer is found to be only 1.5 μm, which is very thin compared with the computer simulation value of 700d0, where d0 is the average distance between the nuclei. A systematic study of various parameters in the carburization and bias steps on the growth of textured (100) diamond films and the subsequent change of surface morphology has been investigated. Experimental results show that these two pre-growth steps seem to ease the growth of textured (100) diamond films and they should be optimized for a set of growth conditions. It is suggested that varying these parameters in the pre-growth steps may cause a change of microstructure, alignment of nuclei, and defect states in the diamond-like layer, resulting in the morphological change of textured (100) diamond films.  相似文献   

19.
M. Gilo  N. Croitoru 《Thin solid films》1999,350(1-2):203-208
HfO2 thin films were deposited using e-beam gun evaporation with ion assisted deposition (IAD) of low energy oxygen ions (40–100 eV) from an end-Hall ion source. A comparison was made using Hf and HfO2 starting materials. The index of refraction was measured as a function of the ion source voltage and compared to results without IAD. Application to high power laser mirrors was verified by measurements of laser damage thresholds at 1.06 μm.  相似文献   

20.
Thin films of titanium oxide have been deposited on (100) silicon wafers and on quartz substrates by reactive r.f. magnetron sputtering from a 99.6% pure Titanium target. Amorphous and overoxidised coatings (TiO2.2) have been obtained from this technique. The influence of the post-deposition annealing between 300 °C and 1100 °C on the structural and optical properties and on the surface morphology has been investigated. The results of X-ray diffraction showed that films annealed from 300 to 500 °C have an anatase crystalline structure whereas those annealed at 1100 °C have a rutile crystalline structure. Optical analyses showed that UV-Vis transmission spectra are strongly modified by the annealing temperature and refractive index of TiOx layers also changes. Atomic force microscopy measurements corroborate optical and structural analyses and showed that the surface of the coatings can have various appearances and morphologies for the annealing temperatures investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号