首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal‐organic frameworks (MOFs) represent a new class of hybrid organic‐inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.  相似文献   

2.
Metal-organic frameworks (MOFs) represent a new class of hybrid organic-inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.  相似文献   

3.
通过研究具有两种轮桨状构筑基元和四种纳米笼子结构锌基金属-有机框架(Zn-MOF)的染料吸附特性和机理,发现其分子吸附的普适性, 以及尺寸和电荷的选择性。由于Zn-MOF孔道内漂浮着抗衡阴离子, 及框架上有可配位位点, 所以它能通过离子交换机理吸附阴性染料、框架上电荷转变机理吸附阳性染料、主客体相互作用吸附中性染料, 表现出优越的分子吸附多功能性。Zn-MOF内带电荷纳米笼的尺寸选择性和电荷选择性的共同作用为设计具有更高水平兼容性和识别性的优异多孔材料铺平了道路。  相似文献   

4.
Porous coordination polymers (PCPs), which are microporous materials, have been given much attention from both scientific and commercial aspects regarding their application to gas storage, gas separation and catalytic reaction because of the regularity of their pore shape and pore size, accompanied with the functionality. Moreover, in recent years, flexible PCPs, which are structurally transformable depending upon external stimuli, have been attractive because they provide unique properties, dissimilar to those of zeolites. In this review, the chemistry and application of flexible crystalline PCPs are summarized and discussed.  相似文献   

5.
Metal?organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self‐assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre‐designing or post‐synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.  相似文献   

6.
崔可建  蔡超  朱才镇 《材料导报》2018,32(5):755-764, 771
植物多酚是一类来源广泛的生物质材料,具有典型的生物活性和抗氧化性,还具有可吸收紫外线、可与金属离子螯合及可在化学反应中用作亲核试剂等多种功能与性质。植物多酚特殊的分子结构使其可以通过氢键、共价键、配位键、π-π堆叠等多种相互作用与其他分子结合,作为载体用于构筑各种功能材料。本文系统介绍了植物多酚的各种功能,讨论了近年来基于其功能性及化学反应性所开展的功能材料制备方面的研究进展,并展望了植物多酚这一类环境友好型生物质在功能材料制备方面的应用前景。  相似文献   

7.
Abstract

Porous coordination polymers (PCPs), which are microporous materials, have been given much attention from both scientific and commercial aspects regarding their application to gas storage, gas separation and catalytic reaction because of the regularity of their pore shape and pore size, accompanied with the functionality. Moreover, in recent years, flexible PCPs, which are structurally transformable depending upon external stimuli, have been attractive because they provide unique properties, dissimilar to those of zeolites. In this review, the chemistry and application of flexible crystalline PCPs are summarized and discussed.  相似文献   

8.
《Zeolites》1995,15(4):324-332
Various aluminophosphate and silicoaluminophosphate molecular sieves were treated with methanolic HCl to see its effectiveness as an alternative route for removing organic template molecules from molecular sieves. Both calcined and methanolic HCl-treated samples were characterized by X-ray powder diffraction and water adsorption-desorption isotherm measurements. The effectiveness of methanolic HCl in the removal of template molecules was found to be dependent on the pore size of the molecular sieves; that is, the template molecules were extracted effectively in sieves having a pore size ≥6 Å. This method is not effective for molecular sieves with a pore size <6 Å. This differential behavior is apparently a result of steric hindrance, that is, difficulty in removing template molecules from the zeolite cages as a result of their large size compared with the cage opening. This behavior has been exploited to stabilize the structure of the molecular sieve SAPO-37 against water by selectively removing the template molecules from the large cages (α cages) but keeping them intact in the small cages (β cages).  相似文献   

9.
Lateral heterostructures consisting of 2D transition metal dichalcogenides (TMDCs) directly interfaced with molecular networks or nanowires can be used to construct new hybrid materials with interesting electronic and spintronic properties. However, chemical methods for selective and controllable bond formation between 2D materials and organic molecular networks need to be developed. As a demonstration of a self‐assembled organic nanowire‐TMDC system, a method to link and interconnect epitaxial single‐layer MoS2 flakes with organic molecules is demonstrated. Whereas pristine epitaxial single‐layer MoS2 has no affinity for molecular attachment, it is found that single‐layer MoS2 will selectively bind the organic molecule 2,8‐dibromodibenzothiophene (DBDBT) in a surface‐assisted Ullmann coupling reaction when the MoS2 has been activated by pre‐exposing it to hydrogen. Atom‐resolved scanning tunneling microscopy (STM) imaging is used to analyze the bonding of the nanowires, and thereby it is revealed that selective bonding takes place on a specific S atom at the corner site between the two types of zig‐zag edges available in a hexagonal single layer MoS2 sheet. The method reported here successfully combining synthesis of epitaxial TMDCs and Ullmann coupling reactions on surfaces may open up new synthesis routes for 2D organic‐TMDC hybrid materials.  相似文献   

10.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.  相似文献   

11.
A sort of non-polystyrene type hypercrosslinked resin was firstly synthesized through chloromethylation of simple aryl molecules (benzene, toluene, naphthalene, diphenyl), succedent continuous Friedel-Crafts alkylation polymerization and post-crosslinking reaction. The chemical and porous structures of these novel resins were characterized with BET, FT-IR and elementary analysis, respectively. The results showed that these novel adsorptive materials possessing abundant crosslinked networks had high specific surface areas (up to 1191.26 m2/g), large pore volumes (0.2–1.4 ml/g), narrow pore size distributions (mainly in the range of micropores and small mesopores).  相似文献   

12.
Abstract

Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.  相似文献   

13.
Choi M  Ryoo R 《Nature materials》2003,2(7):473-476
Nanostructured organic materials, particularly those constructed with uniform nanopores, have been sought for a long time in materials science. There have been many successful reports on the synthesis of nanostructured organic materials using the so-called, 'supramolecular liquid crystal templating' route. Ordered nanoporous polymeric materials can also be synthesized through a polymerization route using colloidal or mesoporous silica templates. The organic pore structures constructed by these approaches, however, are lower in mechanical strength and resistance to chemical treatments than nanoporous inorganic, silica and carbon materials. Moreover, the synthesis of the organic materials is yet of limited success in the variation of pore sizes and structures, whereas a rich variety of hexagonal and cubic structures is available with tunable pore diameters in the case of the inorganic materials. Here we describe a synthesis strategy towards ordered nanoporous organic polymers, using mesoporous carbon as the retaining framework. The polymer-carbon composite nanoporous materials exhibit the same chemical properties of the organic polymers, whereas the stability of the pores against mechanical compression, thermal and chemical treatments is greatly enhanced. The synthesis strategy can be extended to various compositions of hydrophilic and hydrophobic organic polymers, with various pore diameters, connectivity and shapes. The resultant materials exhibiting surface properties of the polymers, as well as the electric conductivity of the carbon framework, could provide new possibilities for advanced applications. Furthermore, the synthesis strategy can be extended to other inorganic supports such as mesoporous silicas.  相似文献   

14.
Hierarchical channel or well-connected small and large pore networks show multiple advantages for application in catalysis or adsorbent in aqueous condition. Micro- and mesopores provide size or shape selectivity for a guest molecule, while additional macropores reduce transport limitations. In this study, we proposed a novel method to prepare bimodal porous aluminas, which have meso- and macropores with narrow pore size distribution and well defined pore channels. The framework of the porous alumina is prepared via a chemical templating method using alkyl carboxylates. Polystyrene (PS) beads are employed as a physical template for macropores. We examined polydiallyldimethylammonium chloride (PDDA)-treated aluminas as organic adsorbent in aqueous solution. Above 90% of the anionic dye (acid red 44) is removed within 10 min, and the adsorption rate of PDDA/P4 (supported on the bimodal porous alumina) is faster than that of PDDA/P2 (supported on the unimodal porous alumina) because macropore of P4 have reduced transport limitation and enhanced the accessibility to the active site of cationic charge.  相似文献   

15.
The aim of this paper is the investigation of the leaching behaviour of different porous materials containing organic pollutants (PAH: naphthalene and phenanthrene). The assessment methodology of long term leaching behaviour of inorganic materials was extended to cement solidified organic pollutants. Based on a scenario-approach considering environmental factors, matrix and pollutants specificities, the applied methodology is composed of adapted equilibrium and dynamic leaching tests. The contributions of different physical and chemical mechanisms were identified and the leaching behaviour was modelled. The physical parameters of the analysed reference and polluted materials are similar. A difference in the pore size distribution appears for higher naphthalene content. The solubility of the PAH contained in the material is affected by the ionic strength and by the presence of a co-solvent; the solution pH does not influence PAH solubility. The solubility of the major mineral species is not influenced by the presence of the two PAH nor by the presence of the methanol as co-solvent in the range of the tested material compositions. In the case of the leaching of a monolith material the main transport mechanism is the diffusion in the porous system. For both mineral and organic species we observed at least two dynamic domains. At the beginning of the leaching process the released flux is due to the surface dissolution and to the diffusion of the main quantity dissolved in the initial pore solution. The second period is governed by a stationary regime between dissolution in pore water and diffusion. The model, coupling transport and chemical phenomena in the pore solution, at the monolith surface and in the leachate simulates satisfactory the release for both mineral and organic species.  相似文献   

16.
The interplay of physical and chemical properties at the nanometer scale provides porous nanoparticles with unique sorption and interaction capabilities. These properties have aroused great interest toward this class of materials for application ranging from chemical and biological sensing to separation and drug delivery. However, so far the preferential uptake of different components of mixed solvents by porous nanoparticles is not measured due to a lack of methods capable of detecting the resulting change in physical properties. Here, a new method, nanomechanical mass correlation spectroscopy, is used to reveal an unexpected dependence of the effective mass density of porous metal–organic framework (MOF) nanoparticles on the chemistry of the solvent system and on the chemical functionalization of the MOF's internal surface. Interestingly, the pore size of the nanoparticles is much too large for the exclusion of small solvent molecules by steric hindrance. The variation of effective density of the nanoparticles with the solvent composition indicates that a complex solvent environment can form within or around the nanoparticles, which may substantially differ from the solvent composition.  相似文献   

17.
Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well‐defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic–organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials.  相似文献   

18.
The tremendous pace in the development of information technology is rapidly approaching a limit. Alternative materials and operating principles for the elaboration and communication of data in electronic circuits and optical networks must be identified. Organic molecules are promising candidates for the realization of future digital processors. Their attractive features are the miniaturized dimensions and the high degree of control on molecular design possible in chemical synthesis. Indeed, nanostructures with engineered properties and specific functions can be assembled relying on the power of organic synthesis. In particular, certain molecules can be designed to switch from one state to another, when addressed with chemical, electrical, or optical stimulations, and to produce a detectable signal in response to these transformations. Binary data can be encoded on the input stimulations and output signals employing logic conventions and assumptions similar to those ruling digital electronics. Thus, binary inputs can be transduced into binary outputs relying on molecular switches. Following these design principles, the three basic logic operations (AND, NOT, and OR) and more complex logic functions (EOR, INH, NOR, XNOR, and XOR) have been reproduced already at the molecular level. Presently, these simple “molecular processors” are far from any practical application. However, these encouraging results demonstrate already that chemical systems can process binary data with designed logic protocols. Further fundamental studies on the various facets of this emerging area will reveal if and how molecular switches can become the basic components of future logic devices. After all, chemical computers are available already. We all carry one in our head!  相似文献   

19.
Metal–organic frameworks (MOFs) are crystalline coordination polymers, assembled from inorganic nodes connected by organic linker molecules. An enormous surface area, huge compositional variety, regular structure, and favorable mechanical properties are among their outstanding properties. Monolithic MOF thin films, i.e., surface‐mounted metal–organic frameworks (SURMOFs), with high degree of structural order and adjustable defect density, can be prepared on solid substrates using layer‐by‐layer techniques. Recent studies where SURMOFs served as model systems for quantitative studies of molecular interactions in porous media, including diffusion, are reviewed. Moreover, SURMOFs are ideally suited for the incorporation of photoactive molecules as well as to study electrical transport through crystalline molecular assemblies. Recent work has demonstrated that the realization of crystalline chromophore assemblies via the SURMOF approach allows the study of fundamental aspects of exciton transport, exciton channeling, and photon upconversion at internal interfaces in organic semiconductor materials. Due to their crystalline nature, MOF materials are well suited for quantitative comparisons with theoretical results; especially, since defect densities and types can be characterized and varied in a straightforward fashion. The active role of these nanoporous films in advanced applications, like for remote‐controlled release of molecules, membranes with photoswitchable selectivity, and ion‐conductors with adjustable conductivity, are also emphasized.  相似文献   

20.
《工程(英文)》2020,6(12):1432-1442
Sustainable processes for purifying water, capturing carbon, producing biofuels, operating fuel cells, and performing energy-efficient industrial separations will require next-generation membranes. Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents, but also solves the swelling problems that occur with delicate polymer substrates. Furthermore, the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks (MOFs) can be reduced when solvent-less vapor-phase approaches are employed. This perspective covers several vacuum deposition processes, including initiated chemical vapor deposition (iCVD), initiated plasma-enhanced chemical vapor deposition (iPECVD), solvent-less vapor deposition followed by in situ polymerization (SLIP), atomic layer deposition (ALD), and molecular layer deposition (MLD). These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities. The resulting membranes have shown promising performance for gas separation, nanofiltration, desalination, and water/oil separation. Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号