首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical pneumatic and thermal design procedure is proposed for earth-to-air heat exchangers (EAHEs) of registry type. The procedure allows to choosing between different EAHE geometrical configurations and between the two usual air circulation paths inside the EAHE (i.e. the Z- and Π-paths, respectively). The implementation of the design procedure is made for the EAHE of a large passive house (PH) built near Bucharest, Romania (AMVIC PH). A time-dependent simulation of EAHE’s operation is performed. It allows to computing the soil temperature profile at the surface and at various depths and the air temperature distribution inside the EAHE. This simulation is validated by comparison with experimental results. The EAHE heating and cooling potential during the year is investigated. The energy delivered by the EAHE depends significantly on its geometrical configuration. A computer fluid dynamics (CFD) analysis is also performed. This analysis is validated by comparison with experimental results. There is good agreement between the results predicted by the design procedure and the CFD analysis concerning the air pressure drops in the EAHE. From a thermal point of view the Z-path should be preferred to the Π-path. The CFD analysis results confirm the conclusions stressed out from the simple analytic design procedure and the time-dependent simulation.  相似文献   

2.
Viorel Badescu   《Renewable Energy》2007,32(5):845-855
This paper develops previous research on passive house (PH) space heating. A simple and accurate ground heat exchanger model is developed. It is based on a numerical transient bi-dimensional approach that allows to computing the ground temperature at the surface and at various depths. The new model was integrated into the existing theoretical approach and implemented within the computer code used to simulate the heating system operation in Pirmasens PH (Rhineland Palatinate, Germany). The heating and cooling potential of the system under real climatic conditions was investigated. The energy delivered by the ground heat exchanger depends significantly on different design parameters like pipe's depth, diameter and material.  相似文献   

3.
ABSTRACT

Conventional passive solar systems can significantly reduce a building's heating load. However, the integration of passive heating and cooling systems in the same building and the benefits of actively controlling passive systems has largely been unexplored. The objective of this study was to determine the relative performance of a passive solar heating and sky cooling system operating with a range of control strategies, with the goal of minimising the overall annual energy use for space conditioning. A combined system (CS) and a separate system (SS) were simulated with thermal networks using MATLAB, with weather data for Louisville, KY. The control strategies simulated included: Seasonal, Ambient, Room and Matrix. The highest fraction of energy supplied by ambient sources for the SS was 0.707 with Matrix control, while for the CS, the highest fraction (0.704) was with Matrix temperature control with switchable attributes for heating and cooling.  相似文献   

4.
The developments in design theory of plate heat exchangers, as a tool to increase heat recovery and efficiency of energy usage, are discussed. The optimal design of a multi-pass plate-and-frame heat exchanger with mixed grouping of plates is considered. The optimizing variables include the number of passes for both streams, the numbers of plates with different corrugation geometries in each pass, and the plate type and size. To estimate the value of the objective function in a space of optimizing variables the mathematical model of a plate heat exchanger is developed. To account for the multi-pass arrangement, the heat exchanger is presented as a number of plate packs with co- and counter-current directions of streams, for which the system of algebraic equations in matrix form is readily obtainable. To account for the thermal and hydraulic performance of channels between plates with different geometrical forms of corrugations, the exponents and coefficients in formulas to calculate the heat transfer coefficients and friction factors are used as model parameters. These parameters are reported for a number of industrially manufactured plates. The described approach is implemented in software for plate heat exchangers calculation.  相似文献   

5.
Nowadays the study of Net Zero Energy Buildings (NZEBs) is fundamental, because they are the main strategy to reduce the building energy demand and CO2-equivalent emissions.This paper analyses a case study concerning a multipurpose building located in Palermo (Southern Italy), and evaluates the benefits related to the use of an earth-to-air heat exchanger in a NZEB, in terms of energy saving and reduction of CO2-equivalent emissions, for a Mediterranean climate.The chosen building envelope is thermally performing. The HVAC system consists in fan-coil units connected to an air-to-water heat pump, and mechanical ventilation. The energy demand is reduced by an earth-to-air heat exchanger that pre-heats the ventilation outside air in winter and cools it in summer. The optimization of the heat exchange with the ground is a key-element to reduce the primary energy requirements and CO2-equivalent emissions, especially during summer. Moreover, this paper assesses the possibility to obtain a NZEB using only on-site renewable energy (on the roof of the building), with and without the earth-to-air heat exchanger. The energy analysis is carried out by means of a dynamic building simulation engine, namely EnergyPlus. In addition, a thermal performance and an environmental analysis are performed.  相似文献   

6.
地源热泵在室内游泳池供暖空调中的应用研究   总被引:3,自引:0,他引:3  
在分析了地源热泵系统的特点和概算了室内游泳池的冷热负荷的基础上,提出采用地源热泵系统可同时满足室内游泳池的供暖、空调及池水加热3项需求;分析了不同季节地源热泵在游泳池的运行工况。通过分析比较表明,地源热泵系统的运行费用比传统的冷水机组加燃油锅炉系统的运行费用节省约50%,比冷水机组加燃气锅炉系统的运行费用节省21%。  相似文献   

7.
This paper evaluates the optimum coolant temperature considering the exergy loss in a shell and tube condenser in which vapor is at its saturated temperature. First, exergy loss was formulated mathematically and then presented as a function of operating temperatures and optimum coolant and steam mass flow rates. The optimization problem was defined by full condensation of vapor in a condenser and solved by a sequential quadratic programming method. The optimization results were obtained for an industrial condenser for two condensate temperatures of 46°C and 54°C. When the upstream steam mass flow rate increased, the optimum coolant temperature and the exergy efficiency decreased, and the exergy loss also increased simultaneously. The results showed higher values for the higher condensate temperature of 54°C compared with that for 46°C. For instance, if the condensate temperature increases from 46°C to 54°C, the coolant temperature will be increased from 16.76°C to 25.17°C. In addition, by assuming the ambient temperature of 15°C, the exergy loss will be decreased from 172.5 to 164.6 kW. A linear relationship was also shown between the exergy efficiency and the dimensionless temperature, which is presented as a ratio of the temperature difference rate between inlet cooling water and ambient temperatures to the temperature difference rate of condensate and ambient temperatures.  相似文献   

8.
This paper presents the modeling and simulation of an earth air heat exchanger (EAHE), employed as an air-conditioning device for buildings in the climate conditions of the south of Algeria. The earth tubes buried in the ground can offer considerable advantages in terms of energy savings. The appropriate depth of the buried tubes was calculated taking into account the physical properties of the soil in the region under study and using a specific program developed by the authors. A parametric analysis was carried out taking into account the length and the radius of the pipe and the velocity of the air in the pipe. The results of performance and overall energy savings are presented. The maximum daily cooling capacity of the EAHE studied was 1.755 kWh. Results showed that a simple EAHE system can provide 246.815 kWh in a period of one year.  相似文献   

9.
The goal of the present study is to validate the cooling performance of a ground-coupled heat pump system established in Fırat University, Elazığ (38.41°N, 39.14°E), Turkey. The cooling load of the test room was 3.1 kW at design conditions. The experimental results were obtained from June to September in cooling season of 2003. The ground heat exchanger was used, and it was buried with in 2 m depth trench. The average cooling performance coefficient of the system (COPoverall) was obtained to be 2.01. The results obtained from experimental measurement showed that these systems could be used safely, reliably and efficiently at the lowest possible cost for Elazığ, Turkey climatic conditions. Especially, the seasonal energy efficiency ratio (SEER) of this system is moderate at longer-term testing.  相似文献   

10.
In an earlier paper (Yau, 2006. Application of a heat pipe heat exchanger to dehumidification enhancement in tropical HVAC systems—a baseline performance characteristics study. Int. J. Thermal Sci., accepted for publication), the baseline performance characteristics of the 8‐row wickless heat pipe heat exchanger (HPHX) were established for it being used in a vertical configuration under tropical climate conditions. The present paper covers the tests and simulation conducted on the same experimental HVAC system without the HPHX installed, thereby determining the enthalpy change for the air passing through the chilled water coil (CWC) alone (i.e. without the pre‐cooling or reheating effect of the HPHX). These experimental results, in comparison with those already obtained, would also allow an examination of how the reheat recovery with the 8‐row HPHX installed was influenced by the same key inlet parameters. The final results show that the enthalpy change with a HPHX installed for all cases examined are significantly higher than enthalpy change without a HPHX installed, demonstrating that the cooling capability of the CWC was enhanced by the HPHX. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
地源热泵是一种利用土壤所储藏的太阳能资源作为冷热源进行能量转换的供暖制冷空调系统,通过输入少量的高品位能源(如电力、机械功、燃气和液体燃料),实现热量从低温热源向高温热源的转移.以上海某小型别墅为对象,设计了一套家用地源热泵空调系统.首先计算了夏季冷负荷和冬季热负荷,然后根据冷、热负荷选择一套水源热泵机组(MWH080CR型机组)和相应的风机盘管,进行了室内水管环路系统、土壤热交换器和地板采暖的设计选型,最后对系统的能效比进行了计算.结果表明,该空调系统具有节能环保、稳定可靠、舒适耐用等优点.  相似文献   

12.
In this paper, an approach for the optimum design of heat exchangers has been presented. Traditional design method of heat exchangers involves many trials in order to meet design specifications. This can be avoided through the present design method, which takes the minimization of annual total cost as a design objective. In alternative optimum design methods, such as Lagrange multiplier method, by changing one variable at a time and using a trial–error or a graphical method, optimum results are obtained in a long time. In the present design optimization problem, the total annual cost has been taken as the objective function and heat balance, and rate equation have been taken as equal constraint. The method using the penalty function transforms the constrained problem into a single unconstrained problem. To solve the optimal problem, the method of steepest descent has been used. Initial design variables include the tube‐inside coefficient of heat transfer, tube‐outside coefficient of heat transfer, temperature difference and outside tube area of heat transfer. The changes in variables are considered simultaneously to reach an optimum solution. The results show that the present approach is a powerful tool for optimum design of heat exchangers and is expected to be beneficial to energy industry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
在冬冷夏热且夏季冷负荷远大于冬季热负荷的地区常采用带有冷却塔的复合式地源热泵系统,其控制策略存在极大的优化空间。文章提出了直接比较冷却塔和与土壤换热器相连的板式换热器的出口温度的控制方法,并通过人工神经网络预测板式换热器机组侧的出口水温来实现此控制方法。通过FLUENT软件建立复合式地源热泵系统动态数值模型,获取建立神经网络的数据,采用3层BP网络,建立了多个预测板式换热器机组侧出口温度的模型。研究结果表明,采用神经网络可以准确实现此预测,绝对误差不超过0.4℃。  相似文献   

14.
Microcombustors are microscale combustion devices that can be used to power microelectromechanical systems. Many combustor configurations are reported in the literature and, among them, combustion in a microscale recirculating heat exchanger is a feasible option. In this work, a simple, double-channel, recirculating heat exchanger is considered. The novelty of the present work lies in the heat transfer analysis approach to design a microcombustor. A combustor is designed using thermal resistance networks for a premixed fuel containing a methane–air mixture in stoichiometric ratio. The length of the combustor is designed based on the position of the combustion flame. Computational fluid dynamics is utilized to validate the theoretical results. The analysis is carried out for adiabatic and nonadiabatic conditions. The combustor lengths for adiabatic and nonadiabatic (ceramic) combustors vary from 39 to 242 mm and 49 to 276 mm, respectively, for variations in the mass flow rate of the premixed gases from 6 to 10 mg/s. A minimum limiting flow rate of 6 mg/s was identified. The average error in the maximum combustion gas temperatures between the theoretical and CFD results obtained in this work is 4.2%. The theoretical approach presented can be suitably applied to more complex geometries involving multichannels and variations in geometrical properties.  相似文献   

15.
A prototype low capacity (10 kW) single stage Li–Br absorption heat pump (AHP), suitable for residential and small building applications has been developed as a collaborative result between various European research institutes and industries. The primary heat source for the AHP is supplied from flat plate solar collectors and the hot/chilled water from the unit is delivered to a floor heating/cooling system. In this paper we present the simulation results and an overview of the performance assessment of the complete system. The calculations were performed for two building types (high and low thermal mass), three climatic conditions, with different types of solar collectors and hot water storage tank sizes and different control systems for the operation of the installation. The simulations were performed using the thermal simulation code TRNSYS. The estimated energy savings against a conventional cooling system using a compression type heat pump was found to be in the range of 20–27%.  相似文献   

16.
鲁德宏  林承方 《节能》2002,(3):36-37
在以天然气为燃料的前提条件下,提出了热冷联供的3种冷热源方案,从技术经济方面论述了各方案的特点,提出了选择建议。  相似文献   

17.
The detailed design and energy analysis of ground source heat pump systems requires the ability to predict the short‐term behavior of borehole heat exchangers (BHE). The application of fully discretized models leads to extensive computation times and a substantial effort in terms of pre‐processing work. On the contrary, analytical models offer simple, parameter input‐based modeling and short computation times, but they usually disregard the transient effects of heat and mass transport in the borehole and hence are not suitable for the prediction of the short‐time behavior. In order to combine the advantages of both types of models, the authors developed two‐dimensional thermal resistance and capacity models for different types of BHE. These models take the capacity of the grouting material with one capacity per tube into account and, therefore, the range of validity is extended to shorter times. The correct consideration of all thermal resistances between the fluid in the pipes, the grout capacities and the borehole wall is important because of the significant influence on the validity of the models. With the developed models, the modeling work and the computation time can be significantly reduced compared with fully discretized computations while precise results are still achieved. The validation of the suggested models against fully discretized FEM models shows a very good agreement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this work is to investigate by modelling the possibility of reducing the operational energy of a typical house without negatively affecting its embodied energy. This is done through consideration of different building materials coupled with the use of an earth to air heat exchanger (EAHE) for fresh air supply and cooling. For known indoor and outdoor conditions and for given building materials (thermal capacity and conductance), a ventilation controller determines the amount of flow rate needed to temperate the indoor air temperature to achieve thermal comfort. Different wall configurations are assumed for each of the living zone and the bedroom zone of the apartment. It is found that the use of an optimal wall configuration in each zone coupled with the EAHE results in 76.7% energy savings compared with the reference case with conventional cooling.  相似文献   

19.
In the present paper a quasi‐steady state mathematical model is developed to predict the outlet air temperature and monthly heating and cooling potentials of an earth–air heat exchanger. Monthly values of heating and cooling potentials are estimated by rigorous experimentation throughout the year for composite climate of New Delhi. The uncertainty values are calculated for each month; for December the value is 4.9%. It is observed that there is an 8.9 and a 5.9°C temperature rise and fall during winter and summer due to the earth–air heat exchanger buried at a depth of 1.5 m underground. The correlation coefficient, root mean square of percentage deviation, reduced chi‐square and mean bias error have been computed for each month. The values are 1, 3.0%, 0.8 and ?0.63 for December. Statistical analysis shows that there is fair agreement between theoretical results and experimental observations for each month. Monthly values of heating and cooling potentials have also been predicted for other climatic conditions in India namely Jodhpur, Chennai, Mumbai and Kolkata. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Optimal configuration design for plate heat exchangers   总被引:1,自引:0,他引:1  
A screening method is presented for selecting optimal configurations for plate heat exchangers. The optimization problem is formulated as the minimization of the heat transfer area, subject to constraints on the number of channels, pressure drops, flow velocities and thermal effectiveness, as well as the exchanger thermal and hydraulic models. The configuration is defined by six parameters, which are as follows: number of channels, numbers of passes on each side, fluid locations, feed relative location and type of channel flow. The proposed method relies on a structured search procedure where the constraints are successively applied to eliminate infeasible and sub-optimal solutions. The method can be also used for enumerating the feasible region of the problem; thus any objective function can be used. Examples show that the screening method is able to successfully determine the set of optimal configurations with a very reduced number of exchanger evaluations. Approximately 5% of the pressure drop and velocity calculations and 1% of the thermal simulations are required when compared to an exhaustive enumeration procedure. An optimization example is presented with a detailed sensitivity analysis that illustrates the application and performance of the screening method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号