首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simply designed and the low-cost parabolic-type solar cooker (SPC) was made and tested. The energy end exergy efficiencies of the cooker were experimentally evaluated. The experimental time period was from 10:00 to 14:00 solar time. During this period, it was found that the daily average temperature of water in the SPC was 333 K and the daily average difference between the temperature of water in the cooking pot and the ambient air temperature was 31.6 K. The energy output of the SPC varied between 20.9 and 78.1 W, whereas its exergy output was in the range 2.9–6.6 W. The energy and exergy efficiencies of the SPC were in the range, respectively, 2.8–15.7% and 0.4–1.25%.  相似文献   

2.
An optimum exergy efficiency is derived for flat-plate solar collectors as a ratio of exergy delivery of the collector to the maximum output exergy obtainable. It is a function of the optimum mass flow rate through the collector, which itself is obtained through an optimization of the exergy delivery of the collector.  相似文献   

3.
C. Coskun  Z. Oktay 《Energy》2011,36(2):1319-1323
The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors.  相似文献   

4.
Samaneh Sami  Nasrin Etesami  Amir Rahimi   《Energy》2011,36(5):2847-2855
In the present study, using a previously developed dynamic mathematical model for performance analysis of an indirect cabinet solar dryer [1], a microscopic energy and exergy analysis for an indirect solar cabinet dryer is carried out. To this end, appropriate energy and exergy models are developed and using the predicted values for temperature and enthalpy of gas stream and the temperature, enthalpy and moisture content of the drying solid, the energy and exergy efficiencies are estimated. The validity of the model for predicting variations in gas and solid characteristics along the time and the length of the solar collector and/or dryer length was examined against some existing experimental data. The results show that in spite of high energy efficiency, the indirect solar cabinet dryer has relatively low exergy efficiency. Results show that the maximum exergy losses are in midday. Also the minimums of total exergy efficiency are 32.3% and 47.2% on the first and second days, respectively. Furthermore, the effect of some operating parameters, including length of the collector, its surface, and air flow rate was investigated on the exergy destruction and efficiency.  相似文献   

5.
In this study, a solar thermal based integrated system with a supercritical-CO2 (sCO2) gas turbine (GT) cycle, a four-step Mg–Cl cycle and a five-stage hydrogen compression plant is developed, proposed for applications and analyzed thermodynamically. The solar data for the considered solar plant are taken for Greater Toronto Area (GTA) by considering both daily and yearly data. A molten salt storage is considered for the system in order to work without interruption when the sun is out. The power and heat from the solar and sCO2-GT subsystems are introduced to the Mg–Cl cycle to produce hydrogen at four consecutive steps. After the internal heat recovery is accomplished, the heating process at required temperature level is supplied by the heat exchanger of the solar plant. The hydrogen produced from the Mg–Cl cycle is compressed up to 700 bar by using a five-stage compression with intercooling and required compression power is compensated by the sCO2-GT cycle. The total energy and exergy inputs to the integrated system are found to be 1535 MW and 1454 MW, respectively, for a 1 kmol/s hydrogen producing plant. Both energy and exergy efficiencies of the overall system are calculated as 16.31% and 17.6%, respectively. When the energy and exergy loads of the receiver are taken into account as the main inputs, energy and exergy efficiencies become 25.1%, and 39.8%, respectively. The total exergy destruction within the system is found to be 1265 MW where the solar field contains almost 64% of the total irreversibility with a value of ~811 MW.  相似文献   

6.
This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs.  相似文献   

7.
In the presented paper, energy and exergy analysis is performed for thermochemical hydrogen (H2) production facility based on solar power. Thermal power used in thermochemical cycles and electricity production is obtained from concentrated solar power systems. In order to investigate the effect of thermochemical cycles on hydrogen production, three different cycles which are low temperature Mg–Cl, H2SO4 and UT-3 cycles are compared. Reheat-regenerative Rankine and recompression S–CO2 Brayton power cycles are considered to supply electricity needed in the Mg–Cl and H2SO4 thermochemical cycles. Furthermore, the effects of instant solar radiation and concentration ratio on the system performance are investigated. The integration of S–CO2 Brayton power cycle instead of reheat-regenerative Rankine enhances the system performance. The maximum exergy efficiency which is obtained in the system with Mg–Cl thermochemical and recompression S–CO2 Brayton power cycles is 27%. Although the energy and exergy efficiencies decrease with the increase of the solar radiation, they increase with the increase of the concentration ratio. The highest exergy destruction occurred in the solar energy unit.  相似文献   

8.
One of the main disadvantages of solar air collectors in practical applications is their relatively low efficiency. In this experimental investigation, the shape and arrangement of absorber surfaces of the collectors were reorganised to provide better heat transfer surfaces suitable for the passive heat transfer augmentation techniques. The performance of such solar air collectors with staggered absorber sheets and attached fins on absorber surface were tested. The exergy relations are delivered for different solar air collectors. It is seen that the largest irreversibility is occurring at the conventional solar collector in which collector efficiency is smallest.  相似文献   

9.
Various algebraic formulas for representing solar radiation data are discussed and the results obtained are compared.  相似文献   

10.
Analysis of short-term solar radiation data   总被引:1,自引:1,他引:0  
Solar radiation data are available for many locations on an hourly basis. Simulation studies of solar energy systems have generally used these hourly values to estimate long-term annual performance, although solar radiation can exhibit wide variations during an hour. Variations in solar radiation during an hour, such as on a minute basis, could result in inaccurate performance estimates for systems that respond quickly and non-linearly to solar radiation. In addition, diffuse fraction regressions and cumulative frequency distribution curves have been developed using hourly data and the accuracy of these regressions when applied to short-term radiation has not been established. The purpose of this research is to investigate the inaccuracies caused by using hourly rather than short-term (i.e., minute and 3 min) radiation data on the estimated performance of solar energy systems. The inaccuracies are determined by examination of the frequency distribution and diffuse fraction relationships for short-term solar radiation data as compared to existing regressions and by comparing calculated radiation on tilted surfaces and utilizability based on hourly and short-term radiation data.  相似文献   

11.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

12.
Exergy analysis is used as a tool to analyse the performance of an ejector refrigeration cycle driven by solar energy. The analysis is based on the following conditions: a solar radiation of 700 W/m2, an evaporator temperature of 10 °C, a cooling capacity of 5 kW, butane as the refrigerant in the refrigeration cycle and ambient temperature of 30 °C as the reference temperature. Irreversibilities occur among components and depend on the operating temperatures. The most significant losses in the system are in the solar collector and the ejector. The latter decreases inversely proportional to the evaporation temperature and dominates the total losses within the system. The optimum generating temperature for a specific evaporation temperature is obtained when the total losses in the system are minimized. For the above operating conditions, the optimum generating temperature is about 80 °C.  相似文献   

13.
The effect of solar radiation availability on the performance of different solar heating systems has been studied. The systems include a solar water heater, passive solar houses and district solar heating systems with seasonal heat storage. Also, different collector orientations and collector types have been investigated. The hourly radiation data were generated by a simple computational simulation procedure. It was found that district solar heating systems with concentrating collectors and passive solar houses showed the largest variations for the given conditions.  相似文献   

14.
Stochastic approach for daily solar radiation modeling   总被引:2,自引:0,他引:2  
Mathematical modeling of solar radiation continues to be an important issue in renewable energy applications. In general, existing models are mostly empirical and data dependent. In this paper, a novel approach for solar radiation modeling is proposed and illustrated. The proposed application consists of hidden Markov processes, which are widely used in various signal processing topics including speech modeling with successful results. In the experimental work, mean of hourly measured ambient temperature values are considered as observations of the model, whereas mean of hourly solar radiation values are considered as the hidden events, which constitute the outcomes of the proposed mathematical model. Both solar radiations and temperatures are converted to quantized number of states. Finally, after a training stage that forms the transition probability values of the described states, the hidden Markov model parameters are obtained and tested. The tests are repeated for various numbers of states and observations are presented. Plausible modeling results with distinct properties in terms of accuracy are achieved.  相似文献   

15.
Analysis of energy and exergy has been performed for a latent heat storage system with phase change material (PCM) for a flat-plate solar collector. CaCl2·6H2O was used as PCM in thermal energy storage (TES) system. The designed collector combines in single unit solar energy collection and storage. PCMs are stored in a storage tank, which is located under the collector. A special heat transfer fluid was used to transfer heat from collector to PCM. Exergy analysis, which is based on the second law of thermodynamics, and energy analysis, which is based on the first law, were applied for evaluation of the system efficiency for charging period. The analyses were performed on 3 days in October. It was observed that the average net energy and exergy efficiencies are 45% and 2.2%, respectively.  相似文献   

16.
This work presents one software developed to process solar radiation data. This software can be used in meteorological and climatic stations, and also as a support for solar radiation measurements in researches of solar energy availability allowing data quality control, statistical calculations and validation of models, as well as ease interchanging of data.  相似文献   

17.
A multigeneration system based on solar thermal energy associated with hot and cold thermal storage is designed and analyzed energetically and exergetically. The system produces electricity, a heating effect, a cooling effect, hydrogen, and dry sawdust biomass as outputs by means of organic Rankine cycles, a heat pump, two absorption chillers, an electrolyser, and a belt dryer. The intermittent behavior of the renewable energy source is addressed through the incorporation of hot and cold thermal storage systems to operate an organic Rankine cycle and provide cooling at night. The performance assessment indicates that the overall (day and night) energy and exergy efficiencies are 20.7% and 13.7%, respectively. The majority of the total exergy destruction is attributable to the sawdust belt dryer, at about 64.0%.  相似文献   

18.
When modelling buildings, solar radiation has a large impact on the thermal balance because it usually heats the rooms. In radiant systems that are used for heating and cooling buildings, solar radiation has a large influence both on indoor temperatures and on the efficiency of the radiant system.Many analyses have already been carried out in order to study how beam and diffuse radiation can be distributed in a room. One of the most difficult issues, when modelling room thermal balance, is how to simulate the solar radiation when it enters the room, which in turn depends on the reflectance characteristics of the surface finishing elements.In this study, four different radiation models have been applied in order to solve an overall detailed, dynamic thermal balance in a room with pipes embedded in the floor. Two of the models are detailed; the other two consider the radiation entering the room to be diffuse radiation. As for the behaviour of the impinging solar radiation on the covering materials in a room, measurements have been carried out to determine the reflectance coefficients, which will be used in simulations for characteristic materials used in buildings.Results of the simulations show that a simplified model, which considers solar radiation as uniformly distributed in a room, cannot be used for a detailed comfort analysis; however, when looking at the cooling output of a radiant floor system at the design stage, a simplified model can predict energy transfer to a certain level of accuracy. Moreover, results coming from combined measurements and simulations show that the reflectance characteristic of the covering materials does not affect the cooling capacity of the radiant floor systems, since the most important parameter for cooling performance is the thermal conductivity of the covering layer.  相似文献   

19.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.  相似文献   

20.
In this paper, we propose a new solar air heater with a packed-bed latent storage energy system using PCM spherical capsules. At daytime, the solar heating system stored the thermal solar energy as sensible and latent heat, however, at night it restored. Some parameters, such as the global solar radiation and the mass flow rate are varied to investigate their effect on the absorbed, used, and recovered heat from the system. An optimization study using the first and second laws of thermodynamics is also carried out to obtain the energy and exergy efficiencies. The experimental study was conducted, designed, and realized in the Research and Technology Center of Energy (CRTEn) in Tunisia. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different parts of the collectors, absorbed, instantaneous stored and used thermal energy. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%. The effect of the mass flow rate of air on the outlet temperature of the solar air heater is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号