首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline thin films of CuInSe2 and Cu(In,Ga)Se2 (CIGS) were grown on both polished Mo substrates and Mo-coated glass substrates by one-step electrodeposition. All the as-deposited films have been annealed in vacuum at 450°C for a short time to improve the crystalline properties. The films have been characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The results indicate that the crystallization of the films was greatly improved after annealing. Further more, a CIGS film with 23 at% Ga was obtained.  相似文献   

2.
Pulsed non-melt laser annealing (NLA) has been used for the first time to modify near-surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells. CIGS films deposited on Mo/glass substrates were annealed using a 25 ns pulsed 248 nm laser beam at selected laser energy density in the range 20–60 mJ/cm2 and pulse number in the range 5–20 pulses. XRD peak narrowing and SEM surface feature size increase suggest near-surface structure changes. Dual-beam optical modulation (DBOM) and Hall-effect measurements indicate NLA treatment increases the effective carrier lifetime and mobility along with the sheet resistance. In addition, several annealed CdS/CIGS films processed by NLA were fabricated into solar cells and characterized by photo- and dark-JV and quantum efficiency (QE) measurements. The results show significant improvement in the overall cell performance when compared to unannealed cells. The results suggest that an optimal NLA energy density and pulse number for a 25 ns pulse width are approximately 30 mJ/cm2 and 5 pulses, respectively. The NLA results reveal that overall cell efficiency of a cell processed from an unannealed film increased from 7.69% to 13.41% and 12.22% after annealing 2 different samples at the best condition prior to device processing.  相似文献   

3.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

4.
Cu2ZnSnS4 (CZTS) thin films were deposited by sputtering on glass substrates using stacked precursors. The stacked precursor thin films were prepared from Cu, SnS2 and ZnS targets at room temperature with different stacking orders of Cu/SnS2/ZnS/glass (A), ZnS/Cu/SnS2/glass (B) and SnS2/ZnS/Cu/glass (C). The stacked precursor thin films were sulfurized using a tubular rapid thermal annealing system in a mixed N2 (95%)+H2S (5%) atmosphere at 550 °C for 10 min. The effects of the stacking order in the precursor thin films on the structural, morphological, chemical, electrical and optical properties of the CZTS thin films were investigated. X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy studies showed that the annealed CZTS thin film using a stacking order A had a single kesterite crystal structure without secondary phases, whereas stacking orders B and C have a kesterite phase with secondary phases, such as Cu2−xS, SnS2 and SnS. The annealed CZTS thin film using stacking order A showed a very dense morphology without voids. On the other hand, the annealed CZTS thin films using stacking orders B and C contained the volcano shape voids (B) and Sn-based secondary phases (C) on the surface of the annealed thin films. The direct band gap energies of the CZTS thin films were approximately 1.45 eV (A), 1.35 eV (B) and 1.1 eV (C).  相似文献   

5.
Surface sulfurization of Cu(In,Ga)Se2 (CIGS) thin films was carried out using two alternative techniques that do not utilize toxic H2S gas; a sequential evaporation of In2S3 after CIGS deposition and the annealing of CIGS thin films in sulfur vapor. A Cu(In,Ga) (S,Se)2 thin layer was grown on the surface of the CIGS thin film after sulfurization using In2S3, whereas this layer was not observed for CIGS thin films after sulfurization using sulfur vapor, although a trace quantity of S was confirmed by AES analysis. In spite of the difference in the surface modification techniques, the cell performance and process yield of the ZnO:Al/CdS/CIGS/Mo/glass thin-film solar cells were remarkably improved by using both surface sulfurization techniques.  相似文献   

6.
Polycrystalline CuIn1 − xGaxSe2 (0 ≤ x < 0.3) films (CIGS) were deposited by coevaporating the elements from appropriate sources onto glass substrates (substrate temperature 720 to 820 K). Photoconductivity of the polycrystalline CIGS films with partially depleted grains were studied in the temperature range 130–285 K at various illumination levels (0–100 mW/cm2). The data at low temperature (T < 170 K) were analyzed by the grain boundary trapping model with monovalent trapping states. The grain boundary barrier height in the dark and under illumination were obtained for different x-values of CuIn1−xGaxSe2 films. Addition of Ga in the polycrystalline films resulted in a significant decrease in the barrier height. Variation of the barrier height with incident intensity indicated a complex recombination mechanism to be effective in the CIGS films.  相似文献   

7.
We report the preparation of copper antimony sulfide (CuSbS2) thin films by heating Sb2S3/Cu multilayer in vacuum. Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3 salts at room temperature (27 °C) on well cleaned glass substrates. A copper thin film was deposited on Sb2S3 film by thermal evaporation and Sb2S3/Cu layers were subjected to annealing at different conditions. Structure, morphology, optical and electrical properties of the thin films formed by varying Cu layer thickness and heating conditions were analyzed using different characterization techniques. XRD analysis showed that the thin films formed at 300 and 380 °C consist of CuSbS2 with chalcostibite structure. These thin films showed p-type conductivity and the conductivity value increased with increase in copper content. The optical band gap of CuSbS2 was evaluated as nearly 1.5 eV.  相似文献   

8.
CuInxGa1−xSe2 (CIGS) polycrystalline thin films with various Ga to In ratios were grown using a new two-step electrodeposition process. This process involves the electrodeposition of a Cu–Ga precursor film onto a molybdenum substrate, followed by the electrodeposition of a Cu–In–Se thin film. The resulting CuGa/CuInSe bilayer is then annealed at 600°C for 60 min in flowing Argon to form a CIGS thin film. The individual precursor films and subsequent CIGS films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and Auger electron spectroscopy. The as-deposited precursor films were found to be crystalline with a crystal structure matching that of CuGa2. The annealed bi-layers were found to have the same basic chalcopyrite structure of CuInSe2, but with peak shifts due to the Ga incorporation. Energy dispersive spectroscopy results show that the observed shifts correlate to the composition of the films.  相似文献   

9.
ZnO+Zn2TiO4 thin films were obtained by the sol–gel method, the precursor solutions were prepared using two Ti/Zn ratios: 0.49 and 0.69. The films were deposited on glass slide substrates and sintered at temperatures in the 200–600 °C range in increments of 50 °C, with the goal of studying the dependence of the photocatalytic activity (PA) on the annealing temperature. The films were characterized by X-ray diffraction and UV–Vis spectroscopy. The PA was evaluated by measuring the UV–Vis absorption spectra of the methylene blue in aqueous solution before and after photobleaching, using the Lambert–Beer's principle. The higher photocatalytic activities were obtained from the films with sintering temperature around 450 °C, for both Ti/Zn ratios studied.  相似文献   

10.
Copper indium diselenide polycrystalline thin films of p-, i- and n-type electrical conductivity were grown using a one-step electrodeposition process in a single bath. The bulk structure and the stoichiometry of the layers were determined using X-ray diffraction and X-ray fluorescence. The material composition was correlated with the electrical conductivity type variation, detected by the photoelectrochemical cell. Atomic force microscopy analysis showed copper-rich films deposited at low cathodic potentials (0.6 V vs Ag/AgCl) are of spherical and granular morphology and the grain sizes were 0.3–0.5 μm, while stoichiometric CIS films deposited at 1.0 V vs Ag/AgCl have grain sizes of 0.1–0.4 μm. The initial studies of optoelectronic properties (Voc, Jsc and FF) of the four-layer solar cell devices (glass/FTO/n-CdS/n-CIS/i-CIS/p-CIS/Au) are presented.  相似文献   

11.
Polycrystalline Cu(In,Ga)Se2 (CIGS) thin films were deposited onto soda-lime glass substrates using the three-stage process at the substrate temperature (Tsub) varying from 350 to 550 °C. The effect of Tsub on the structural and electrical properties of CIGS films has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall effect measurement. We found that the surface roughness, constituent phases, film morphologies, resistivity (ρ) and carrier concentration (NP) of as-grown CIGS films indicated different change trends with increase in Tsub. The higher Tsub gives smooth surface, large grain size and single-phase CIGS films. The values of NP and ρ have two demarcated regions at Tsub of 380 and 450 °C. At lower Tsub of 380 °C, larger NP and lower ρ were dominated by the existence of secondary-phase CuxSe with lower resistivity. In the case of 450 °C, the obvious changes in NP and ρ can be attributed to the sufficient Na incorporation diffused from the glass substrate. Finally, the correlation of cell parameters with Tsub was analyzed.  相似文献   

12.
LiCoO2 thin films were deposited on the NASICON-type glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12, by radio frequency (RF) magnetron sputtering and were annealed at different temperatures. The as-deposited and the annealed LiCoO2 thin films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). It was found that the films exhibited a (1 0 4) preferred orientation after annealing and Co3O4 was observed by annealing over 500 °C due to the reaction between the LiCoO2 and the glass ceramics. The effect of annealing temperature on the interfacial resistance of glass ceramics/LiCoO2 and Li-ion transport in the bulk LiCoO2 thin film was investigated by galvanostatic cycling, cyclic voltammetry (CV), potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) with the Li/PEO/glass ceramics/LiCoO2 cell. The cell performance was limited by the Li-ion diffusion resistance in Ohara/LiCoO2 interface as well as in bulk LiCoO2.  相似文献   

13.
Surface sulfurization was developed as a technique for fabricating efficient ZnO : Al/CdS/graded Cu(In,Ga)(S,Se)2/ Mo/glass solar cells. Prior to the sulfurization, single-graded Cu(In,Ga)Se2 (CIGS) films were deposited by a multi-stage process. The sulfurization of CIGS films was carried out using a H2S---Ar mixture at elevated temperatures. The crystallographic and compositional properties of the absorber layers were investigated by XRD, SEM and AES analyses. After sulfurization, sulfur atoms were substituted for selenium atoms at the surface layer of CIGS films to form a Cu(In,Ga)(S,Se)2 absorber layer. The diffusion of sulfur depends strongly on the grain structure of CIGS film. The cell efficiency of the 8–11% range before sulfurization was improved dramatically to 14.3% with Voc = 528 mV, Jsc = 39.9 mA/cm2 and FF = 0.68 after the sulfurization process.  相似文献   

14.
O. Bamiduro 《Solar Energy》2011,85(3):545-552
CuIn(1−x)GaxSe2 (CIGS) thin films were prepared by one-step electro-deposition technique from a salt bath coupled with thiocyanate complex electrolytes followed by annealing in argon atmosphere at 300 °C. The influence of deposition reduction potentials as well as the salt concentrations on the structure, morphology, composition and the optical properties were performed. A reproducible Cu-In-Ga-Se precursor layer deposition with consistent composition control was demonstrated. The as-deposited films exhibit an amorphous behavior; however the films displayed good crystallization after annealing. The films show very uniform and dense grain formation with platelet-like nanostructures. The optical properties of the films are modified due to annealing. The electrical conductivity measurements demonstrate that the transport mechanism is influenced by three different temperature regions: the ionization, extrinsic and intrinsic regions, respectively, as found in other semiconductors. However, the annealed films display downturn in conductivity at low temperature indicating that there may be trapping at localized sites or scattering of the free carriers, which may be attributed to the over growth and defect sites. The electro-deposition technique demonstrates promise of growing high-quality CIGS thin films.  相似文献   

15.
The kinetics of intercalation are discussed using a pulsed laser deposition (PLD) film electrode and electrochemical impedance analysis. Films of LiNi0.8Co0.2O2, deposited on single crystal substrates, were used for the study. The films have intercalative or blocking orientations on different crystal surfaces of the substrates. Impedance spectra show that there are at least three elemental processes in intercalation. Two processes at higher frequencies suggest that they occur at the electrode surface and are influenced by the orientation of the film. The third process appearing at low frequencies below 1 Hz indicates lithium motion in the bulk structure and shows the largest resistance among the three processes. This lithium conduction in a thin PLD film shows a semicircular response and is considered to be influenced more by the structure due to the nanometer-scale thickness.  相似文献   

16.
Zn3P2 semiconductor thin films were prepared by electrodeposition technique form aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry technique. Crystal structure, morphology and composition of as deposited and annealed Zn3P2 thin films grown on SnO2/glass substrates were determined by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. X-ray diffraction data indicated the formation of Zn3P2 as the predominant phase for both as-deposited and annealed films. The compositions of the deposited films were controlled by the bath temperature, deposition potential and Zn/P ratio in the solution.The dark current–voltage measurements of SnO2/Zn3P2/C devices indicated a rectifying behavior and a reverse saturation current density of 1.7×10−7 A/cm2, which is in good accordance with that obtained from films prepared using vacuum technique. Also, the capacitance–voltage measurements showed that the number of interface states and the built in potential are in the order of 5×10−9 cm−3 and 0.85 V, respectively. These preliminary results for Zn3P2 thin films reveal that, this semiconductor material can be used for solar cell applications.  相似文献   

17.
Hydrogen is a renewable and non-polluting fuel. Its production from water using renewable energy is an attractive challenge. In this work we report some results on the preparation of titanium oxide TiO2 thin films for environmental applications such as water photosplitting. TiO2 thin films have been prepared by spin coating technique of sol precursor onto glass substrates. The deposited films were annealed at different temperatures in air. The X-ray diffraction (XRD) experiments show that the two well-known anatase and rutile phases were observed depending both on the conditions of deposition and on the temperature of annealing. The best conditions of crystallization were found to be around 400 °C in air. The influence of the number of deposited layer on the crystalline quality of the films was investigated. The surface morphology of the deposited film was characterized by atomic force microscopy (AFM) and scanning electronic microscopy (SEM). The UV-Vis-NIR spectroscopy shows that the film exhibits a high transmission around 90%. The best layers were obtained when concentrated (HCl) was added to the sol solutions. The direct band gap of the films was found to be around 3.7 eV, and their refractive index was found to vary from 2 to 2.4.  相似文献   

18.
Nanostructured TiO2 thin films were deposited on glass substrates by sol-gel dip coating technique. The structural, morphological and optical characterizations of the as deposited and annealed films were carried out using X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), and UV-vis transmittance spectroscopy. As-deposited films were amorphous, and the XRD studies showed that the formation of anatase phase was initiated at annealing temperature close to 400 °C. The grain size of the film annealed at 600 °C was about 20 nm. The lattice parameters for the films annealed at 600 °C were a = 3.7862 ? and c = 9.5172 ?, which is close to the reported values of anatase phase. Band gap of the as deposited film was estimated as 3.42 eV and was found to decrease with the annealing temperature. At 550 nm the refractive index of the films annealed at 600 °C was 2.11, which is low compared to a pore free anatase TiO2. The room temperature electrical resistivity in the dark was of the order of 4.45 × 106 ohm-cm. Photocatalytic activity of the TiO2 films were studied by monitoring the degradation of aqueous methylene blue under UV light irradiation and was observed that films annealed above 400 °C had good photocatalytic activity which is explained as due to the structural and morphological properties of the films.  相似文献   

19.
In comparison to the traditional use of glass substrates, CuInxGa1−xSe2 (CIGS) deposited onto metal substrates offers improved device cooling under concentration, economical large-scale roll-to-roll processing, and applicability towards lightweight as well as flexible products. However, unlike glass, metal foils tend to exhibit rough surfaces. This study quantifies the effect of substrate roughness on CIGS device performance. Several substrate types with differing average roughnesses were examined. The frequencies of the surface features contributing to roughness are also examined via several different analytical techniques. Devices were prepared and characterized on steel foils, Mo foil, and glass.  相似文献   

20.
Thin films of Cu2ZnSnS4 (CZTS), a potential candidate for absorber layer in thin film heterojunction solar cell, have been successfully deposited by spray pyrolysis technique on soda-lime glass substrates. The effect of substrate temperature on the growth of CZTS films is investigated. X-ray diffraction studies reveal that polycrystalline CZTS films with better crystallinity could be obtained for substrate temperatures in the range 643-683 K. The lattice parameters are found to be a=0.542 and c=1.085 nm. The optical band gap of films deposited at various substrate temperatures is found to lie between 1.40 and 1.45 eV. The average optical absorption coefficient is found to be >104 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号