首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study is focused on influences of parameters including pH, temperature, TiO(2) catalyst concentration, and reactant concentration on the rate of photocatalytic diethyl phosphoramidate (DEPA) decomposition with Hombikat UV 100 (HK) and Degussa P25 (P25) TiO(2). Total mineralization of DEPA is observed. Two regimes of pH, namely in acid and near-neutral environments were found where maximum total carbon (TC) decomposition was observed. The electrostatic effects on adsorption over the TiO(2) surface explain the above phenomena. The maximum rate is observed for P25 at DEPA concentration 1.3 mM whereas the rate grows continuously with DEPA concentration rise for HK. The temperature dependence of TC decomposition rate in the range of 15-63°C with both HK and P25 follows the Arrhenius equation. The activation energy for total carbon decomposition with HK and P25 are 29.5±1.0 and 24.3±3.1 kJ/mol, respectively. The decomposition rate of DEPA is larger over P25 than over HK. The rate over P25 increases faster than that with HK for each unit of the titania added when the TiO(2) concentration is less than 375 mg/l. The higher light absorption and particles aggregation of P25 are responsible for the decrease of reaction rate we observed at catalyst concentration above a certain level. In contrast, the rate over HK increases monotonically with the concentration of the photocatalyst used.  相似文献   

2.
A comparative study of the advanced oxidation of 2,4-dichlorophenol   总被引:2,自引:0,他引:2  
Advanced oxidation processes (AOPs) using UV, UV/H2O2, Fenton and photo-Fenton treatment were investigated at laboratory scale for aqueous solutions of 2,4-dichlorophenol (DCP). The effects on degradation of different reactant concentrations, irradiation time, temperature and pH were assessed. DCP removal, TOC mineralization, dechlorination and change in oxidation state were monitored. UV photolysis was less efficient for total DCP degradation than other AOPs. In contrast, photo-Fenton reaction in acidic conditions led to a higher DCP degradation in a short time. Sixty minutes of treatment were sufficient for 100% DCP removal with 75 mg l(-1) H2O2 and 10 mg l(-1) Fe(II) initial concentrations. In these conditions, a first-order degradation constant for DCP of 0.057 min(-1) was obtained.  相似文献   

3.
In this study UV/TiO2, electro-Fenton (EF), wet-air oxidation (WAO), and UV/electro-Fenton (UV/EF) advanced oxidation processes (AOPs) have been applied to degrade Reactive Red 120 (RR120) dye in aqueous solution. The most efficient method on decolorization and mineralization of RR120 was observed to be WAO process. Photocatalytic degradation of RR120 by UV/TiO2 have been studied at different pH values. At pH 3 photocatalytic degradation kinetics of RR120 successfully fitted to Langmuir-Hinshelwood (L-H) kinetics model. The values of second order degradation rate (k") constant and adsorption constant (K) were determined as 4.525 mg L(-1) min(-1) and 0.387 L mg(-1), respectively. Decolorization efficiency observed in the order of WAO > UV/TiO2 = UV/EF > EF while WAO > UV/TiO2 > UV/EF > EF order was observed in TOC removal (mineralization). For all AOPs, it was found that degradation products in reaction mixture can be disposed safely to environment after 90 min treatment.  相似文献   

4.
Photocatalyzed degradation of uracil (1) and 5-bromouracil (2) has been investigated in aqueous suspensions of titanium dioxide under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation of the compounds under investigation was studied using various parameters such as, different types of TiO2 powders, pH, catalyst concentration, substrate concentrations, and in the presence of electron acceptors like hydrogen peroxide (H(2)O(2)) and potassium bromate (KBrO(3)) besides molecular oxygen. Photocatalyst Degussa P25 was found to be more efficient for the degradation of both compounds as compared with other TiO2 powders such as UV100, PC500 and TTP.  相似文献   

5.
Photocatalytic degradation of carbofuran using semiconductor oxides   总被引:3,自引:0,他引:3  
The photocatalytic degradation of carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) was investigated in an aqueous solution using Degussa P-25 TiO2 and ZnO as photocatalysts. The progress of degradation was monitored using TOC analyzer, HPLC, GC-MS and UV-vis spectrophotometer. The effects of various experimental parameters such as initial concentration of carbofuran, pH of the solution, catalyst loading and light intensity were systematically studied in order to achieve maximum degradation efficiency. The complete mineralization of carbofuran was confirmed by TOC analyzer. The degradation with ZnO showed less efficiency than TiO2. The formation of NO(3)(-) was identified and quantified using HPLC. In addition, four different intermediates formed during the degradation process were also identified and characterized by GC-MS. The mineralization rate was compared with lamps of wavelength 254 and 365 nm under similar conditions. The rate with 254 nm was observed to be very close to that of 365 nm.  相似文献   

6.
Photocatalytic activity of TiO2 and zeolites supported TiO2 were investigated using propoxur as a model pollutant. Hbeta, HY and H-ZSM-5 zeolites were examined as supports for TiO2. Hbeta was chosen as the TiO2 support based on the adsorption capacity of propoxur on these zeolites (Hbeta>HY=H-ZSM-5). TiO2/Hbeta photocatalysts with different wt.% were prepared and characterized by XRD, FT-IR and BET surface area. The progress of photocatalytic degradation of aqueous propoxur solution using TiO2 (Degussa P-25) and TiO2 supported on Hbeta zeolite was monitored using TOC analyzer, HPLC and UV-vis spectrophotometer. The degradation of propoxur was systematically studied by varying the experimental parameters in order to achieve maximum degradation efficiency. The initial rate of degradation with TiO2/Hbeta was higher than with bare TiO2. TOC results revealed that TiO2 requires 600min for complete mineralization of propoxur whereas TiO2/Hbeta requires only 480min. TiO2/Hbeta showed enhanced photodegradation due to its high adsorption capacity on which the pollutant molecules are pooled closely and hence degraded effectively.  相似文献   

7.
The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H(2)O(2) and Fe(3+) and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl(-), CO(3)(2-) or HCO(3)(-) on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe(3+) and H(2)O(2) at molar ratios of H(2)O(2)/Fe(3+) from about 100 to 10. The addition of CO(3)(2-) and HCO(3)(-) substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl(-). At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.  相似文献   

8.
采用火焰化学气相沉积法法制备了掺碳纳米TiO2光催化剂,对催化剂进行了表征。利用自制的连续管式光催化氧化装置研究了掺碳纳米TiO2薄膜对苯气体的光催化降解规律,探讨了相对湿度、初始浓度及苯气体流速等因素对降解率的影响,并与P25粉的光催化性能进行了比较。实验结果表明:在催化剂负载量约为4.7 mg,254 nm和365 nm的8W紫外灯各一盏,相对湿度为80%、苯的初始浓度约为120 mg/m3、苯气体流量为400 mL/min(苯在光催化器中反应时间约为3.5 s)的条件下,苯的降解率可达到15%,高于P25粉的降解效果。  相似文献   

9.
In this study, the photocatalytic degradation of two commercial azo dyes in the presence of TiO(2) suspensions as photocatalyst has been investigated. The degradation of the dyes follows a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Under the certain experimental conditions, in the presence of TiO(2) P-25 decolorization is achieved within 100 min of illumination, while in the presence of TiO(2) Hombikat UV-100 complete color disappearance is accomplished in less than 50 min of light exposure. The influence of various parameters, such as the type and mass of the catalyst, the initial concentration of the dye, etc. on the degradation process was examined. The mineralization of organic carbon was also evaluated by measuring the dissolved organic carbon (DOC) of the dye solutions. Moreover, the toxic properties of the dye solutions treated by photocatalysis were examined by the use of a Microtox bioassay (Vibrio fischeri). Finally, experiments using real textile wastewater were also carried out, in order to examine the effectiveness of the method to a more complex substrate.  相似文献   

10.
The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)相似文献   

11.
In the present work, the photochemical oxidation of 2-chlorophenol aqueous solutions in a batch recycle photochemical reactor using ultraviolet irradiation and hydrogen peroxide was studied. Specifically, the effect of hydrogen peroxide initial concentration (0-10316 mg L(-1)) and 2-chlorophenol initial concentration (150-3000 mg L(-1)) was examined. The process was attended via total organic carbon (TOC), 2-chlorophenol, chloride ion, acetic acid, formic acid and pH measurements. The conversion of 2-chlorophenol observed was always much higher than the corresponding total organic carbon removal, whereas the increase in hydrogen peroxide amount in the solution led to higher values of 2-chlorophenol conversion and total organic carbon removal. Finally, the photo-Fenton reaction was applied to the oxidation of 2-chlorophenol, leading to a higher degree of mineralization of the parent compound.  相似文献   

12.
Application of Fenton oxidation to cosmetic wastewaters treatment   总被引:1,自引:0,他引:1  
The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.  相似文献   

13.
The heterogeneous photocatalytic oxidation of aqueous solutions of 2,4,6-trichlorophenol (2,4,6-TCP) as a model pollutant in industrial wastewater has been carried out in a pilot scale cocurrent downflow contactor reactor (CDCR). The reactions were carried out in the presence of Ultra-Violet radiation, O(2) and TiO(2) photocatalyst (VP Aeroperl P25/20). The TiO(2) was characterized by Dynamic Vapour Sorption (DVS) technique giving specific surface area and surface energy of 46.06 m(2)g(-1) and 80.12 mJ m(-2), respectively. The CDC reactor was fitted with an internally and vertically mounted 1.0 kW or 2.0 kW UV lamp. The reactions were carried out at 50 degrees C and 1 bar, with the reactor being operated in closed loop recycle mode and suspended photocatalyst being re-circulated. The CDC reactor, a device of very high mass transfer efficiency giving unusually large gas hold-up of approximately 50%, was operated with oxygen mass transfer and dissolution in the zone above the UV lamp (high mass transfer zone) and along and around the UV lamp housing (reaction zone). Under optimized reaction conditions, 100% conversion of 2,4,6-TCP was achieved in 180 min using 15 dm(3) solutions with initial concentration of 120 mg dm(-3). A combination of TiO(2) photocatalyst, UV irradiation and oxidant was observed to give the most rapid photodegradation and photomineralization of the 2,4,6-TCP in comparison with irradiation only. Using the 1 kW or 2 kW UV lamps, conversion of 100 mg dm(-3) of 2,4,6-TCP after 30 min was 62.51% and 90.71%, respectively, with initial reaction rates of 1.33 x 10(-5) and 4.22 x 10(-5) mol min(-1), respectively, and rate constants 0.0046 and 0.29 min(-1), respectively.  相似文献   

14.
为了提高TiO2/Ti光电极在可见光下的光电催化活性,采用阳极氧化法制备了一种新型的硫掺杂TiO2/Ti光电极.采用扫描电子显微镜、X射线衍射、X射线荧光光谱等技术对光电极进行了表面形貌、结晶形态、晶粒尺寸、硫的掺杂量和价态以及吸光性能表征.研究表明:硫掺杂TiO2/Ti光电极的最佳制备条件为:成膜电压160V、电流密度100mA/cm2、Na2SO3质量浓度750mg/L;所制备的光电极具有良好的光电催化氧化降解邻苯二甲酸二甲酯活性,并能有效地矿化其中间产物;与TiO2/Ti电极相比,硫的掺杂可以显著提高其在可见光下的光电催化性能.  相似文献   

15.
Effects of H(2)O(2) dosage (0, 10, 50, 100 and 300 mg/l), reaction pH (11.9, 6.5 and 2.5) and initial color intensity (85, 80 and 60 color unit) on decolorization of alkaline 2,4,6-trinitrotoluene (TNT) hydrolysis effluents were investigated at a fixed UV strength (40 W/m(2)). Results indicated that UV/H(2)O(2) oxidation could efficiently achieve decolorization and further mineralization. Pseudo first-order decolorization rate constants, k, ranged between 2.9 and 5.4 h(-1) with higher values for lower H(2)O(2) dosage (i.e., 10 mg/l H(2)O(2)) when the decolorization occurred at the reaction pH of 11.9, whereas a faster decolorization was achieved with increase in H(2)O(2) dosage at both pH 6.5 and 2.5, resulting in the values of k as fast as 15.4 and 26.6 h(-1) with 300 mg/l H(2)O(2) at pH 6.5 and 2.5, respectively. Difference in decolorization rates was attributed to the reaction pH rather than to the initial color intensity, resulting from the scavenging of hydroxyl radical by carbonate ion. About 40% of spontaneous mineralization was achieved with addition of 10 mg/l H(2)O(2) at pH 6.5. Efficient decolorization and extension of H(2)O(2) longevity were observed at pH 6.5 conditions. It is recommended that the colored effluents from alkaline TNT hydrolysis be neutralized prior to a decolorization step.  相似文献   

16.
The present study deals with the investigation of photocatalytic degradation and mineralization of C.I. Basic Red 46 (BR46) and C.I. Basic Yellow 28 (BY28) dyes in single and binary solutions as a function of periodate ion concentration (IO(4)(-)), irradiation time, initial pH and initial dye concentrations. First order derivative spectrophotometric method was used for to simultaneous analysis of BY28 and BR46 in binary mixtures. Langmuir-Hinshelwood kinetic model was applied to experimental data and apparent reaction rate constant values were calculated. The apparent degradation rate constant values of BR46 were higher than those of BY28 for all experiments in single dye solutions. On the other hand, the significant reductions were observed for the apparent degradation rate constant values of the BR46 in the presence of BY28 in binary solutions whereas TOC removal efficiency slightly enhanced in binary system. The highest TOC removal efficiency was obtained at pH 3.0 by adding 5mM periodate ion in to the solution in the presence of 1g/L TiO(2) for both dye solutions. After 3h illumination, 68, 76 and 75% mineralization were found for 100mg/L BY28, 100mg/L BR46 and 50+50mg/L mixed solutions, respectively.  相似文献   

17.
Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives such as amaranth (1) and bismarck brown (2) has been investigated in aqueous suspension by monitoring the change in substrate concentration employing UV spectroscopic analysis technique as a function of irradiation time. The degradation was studied under different conditions such as types of TiO(2), pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)) and ammonium persulphate (NH(4))(2)S(2)O(8) besides air. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytic activity. The dye derivative, bismarck brown (2) was found to degrade faster than amaranth dye (1).  相似文献   

18.
This work studied the photocatalysed oxidation of the antibiotic oxolinic acid (OA) in an annular reactor operated with immobilized TiO(2) on sintered glass cylinders (SGC). Experiments were carried out in 1l solution of OA (18mgl(-1)) at pH 9 with oxygen bubbling. Irradiation was performed with black light (36W). The reaction was monitored by COD, TOC and average oxidation state (AOS) calculations. The antibacterial activity of intermediates was followed using the inhibition halo technique on Escherichia coli cultures. The initial antibiotic concentration decreases in one order of magnitude after 60min irradiation, and was completely eliminated at 100min reaction. The TOC was reduced in 54% and the AOS reach values around +3 indicating the formation of low molecular weight carboxylic acids. The oxidation reaction fit well with the Langmuir-Hinshelwood kinetic model indicating the dependence of reaction rate with initial adsorption step. The antibacterial activity of the solution decreases with antibiotic removal, demonstrating that intermediates do not present antibiotic activity.  相似文献   

19.
Polychlorinated biphenyls (PCBs) are wide spread environmental pollutants. This research focused the optimum physico-chemical conditions under which photocatalytic oxidation (PCO) can be used to degrade 2,2',3,3'-tetrachlorobiphenyl (tetra-CB). Among the optimal physico-chemical conditions studied were UV intensity, hydrogen peroxide (H2O2) and titanium dioxide (TiO2) concentrations, initial pH, and possible reaction intermediates were also determined. The results indicate that the optimal physico-chemical conditions necessary for the degradation of tetra-CB by PCO were UV intensity at 3.16 mW/cm2, 30 mM of H2O2 and 100 mg/l of TiO2. In contrast to the results of PCO studies on other organic compounds, the optimum pH for PCO degradation of tetra-CB was 5.5. The removal efficiency was also higher under acidic conditions than alkaline conditions. Although degradation intermediates such as 1,3-bis(1,1-dimethylethyl)benzene, 2,4-bis(1,1-dimethylethyl)phenol, and 3,5-di-tert-butyl-4-hydroxybenzaldehyde were identified at an early stage in the reaction process, they were not completely degraded even after 7h of PCO reaction.  相似文献   

20.
Nanoparticles of TiO(2) were synthesized by sol-gel technique and the photodeposition of about 1% Ag on TiO(2) particles was carried out. Ag-deposited TiO(2) catalyst was characterised by XRD, TEM and UV-vis spectroscopy. The Ag-TiO(2) catalyst was evaluated for their photocatalytic activity towards the degradation of Reactive Yellow-17 (RY-17) under UV and visible light irradiations. Then the results were compared with synthesized nano-TiO(2) sol and P-25 Degussa and the enhanced degradation was obtained with Ag-deposited TiO(2). This enhanced activity of Ag-TiO(2) may be attributed to the trapping of conduction band electrons. The effect of initial dye concentration, pH and electron acceptors such as H(2)O(2), K(2)S(2)O(8) on the photocatalytic activity were studied and the results obtained were fitted with Langmuir-Hinshelwood model to study the degradation kinetics and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号