首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Glanville fritillary butterfly Melitaea cinxia feeds upon two host plant species in Å land, Finland, Plantago lanceolataand Veronica spicata, both of which produce iridoid glycosides. Iridoids are known to deter feeding or decrease the growth rate of many generalist insect herbivores, but they often act as oviposition cues to specialist butterflies and are feeding stimulants to their larvae. In this study, two iridoid glycosides (aucubin and catalpol) were analyzed by micellar electrokinetic capillary chromatography. We measured the spatial and temporal variation of iridoid glycosides in natural populations of the host plants of M. cinxia. We also analyzed the aucubin and catalpol content in plants in relation to their use by ovipositing females, and in relation to the incidence of parasitism of M. cinxia larvae in natural populations. The mean concentrations of aucubin and catalpol were higher in P. lanceolata than in V. spicata, and catalpol concentrations were higher than aucubin concentrations in both host species. Plantago lanceolata individuals that were used for oviposition by M. cinxia had higher aucubin concentrations than random plants and neighboring plants. Additionally, oviposition and random plants had higher catalpol concentrations than neighboring plants, indicating that ovipositing females select for high iridoid glycoside plants or that oviposition induces iridoid glycoside production in P. lanceolata. Parasitism by the specialist parasitoid wasp Cotesia melitaearum occurred most frequently in larval groups that were feeding on plants with low concentrations of catalpol, irrespective of year, population, and host plant species. Therefore, parasitoids appear to avoid or perform poorly in host larvae with high catalpol content.  相似文献   

2.
It is predicted that enemies of insect herbivores may influence the effects of herbivores on their host plants by affecting the choice of plant genotypes. To examine the effect of predators, we conducted two experiments, each with a different caterpillar species (Junonia coenia and Pyrrharctia isabella). Under seminatural conditions, we provided a choice between two genotypes of plantain (Plantago lanceolata) with different levels of iridoid glycosides and used Podisus maculiventris stinkbugs as predators. There were four treatments: no herbivores and no predators, low density of herbivores and no predators, high density of herbivores and no predators, and high density of herbivores plus predators. The caterpillars had little effect on plant growth but did influence the iridoid glycoside concentration. For the Junonia experiment, the concentration of iridoid glycosides was less for plots with a low density of caterpillars (with no predators) compared to the other treatments of caterpillar density. In the Pyrrharctia experiment, catalpol was induced by a high density of caterpillars (with no predators). There were no increases in total iridoid glycosides associated with either herbivore species. The presence of predators had no effect on plant growth or total iridoid glycoside pattern. The lack of effect by predators seems to reflect the relatively large variation in iridoid glycoside concentration among leaf ages, and the herbivores ability to respond to that variation, such that the difference in iridoid glycoside concentrations in the plant genotypes was less important.  相似文献   

3.
Variation in concentrations of leaf nitrogen and iridoid glycosides was examined in replicate plants of five genotypes ofPlantago lanceolata (Plantaginaceae) grown in an experimental garden. Nitrogen concentration and iridoid glycoside concentration were affected by leaf age. New leaves had nitrogen concentrations 1.7 to 2.7 times higher than mature leaves. Catalpol concentration was highest in new and intermediate-aged leaves. The concentration of aucubin, the biosynthetic precursor to catalpol, was higher in intermediate-aged leaves than in mature leaves, in three of five genotypes. Consequently, the proportion of aucubin relative to total iridoid glycosides increased as leaves aged. Concentration of iridoid glycosides was not correlated with plant size. Plant genotype significantly affected concentration of nitrogen and iridoid glycosides, as well as plant size. Thus, major indicators of hostplant quality for insect herbivores varied considerably both within and among plant genotypes and individuals.  相似文献   

4.
The buckeye butterfly,Junonia coenia (Lepidoptera: Nymphalidae), specializes on plants that contain iridoid glycosides. To determine the fate of these compounds in larvae, pupae, and adults of this species, we reared larvae on artificial diets with and without iridoid glycosides, and on leaves of a host plant,Plantago lanceolata (Plantaginaceae). Quantification by gas chromatography showed that newly molted third-, fourth-, and fifth-instar larvae reared on leaves ofP. lanceolata contained means of 5.13, 2.88, and 6.83% dry weight iridoid glycoside. In contrast, the mean iridoid glycoside concentration of actively feeding fifth-instar larvae was 0.28% dry weight, that of pupae was 0.19% dry weight iridoids, and adults contained no detectable iridoids. Feeding experiments suggested that this reduction in actively feeding larvae was due to the metabolism of iridoid glycosides.P. lanceolata leaves in these experiments contained a mean of 1.00% dry weight iridoid glycoside, with a 2:1 ratio of aucubin to catalpol. Calculation of iridoid consumption and utilization indices showed that larvae fed artificial diets consumed, digested, and sequestered aucubin and catalpol in similar ways. When these indices were calculated for larvae fed leaves ofP. lanceolata, catalpol was sequestered twice as efficiently as aucubin.  相似文献   

5.
We examined the effects of a set of four biosynthetically related iridoid glycosides, aucubin, catalpol, loganin, and asperuloside, on larvae of a generalist,Lymantria dispar (Lymantriidae), the gypsy moth, and an adapted specialist, the buckeye,Junonia coenia (Nymphalidae). In general,L. dispar grew and survived significantly less well on artificial diets containing iridoid glycoside, compared to a control diet without iridoid glycosides. In choice tests, previous exposure to a diet containing iridoid glycosides caused larvae subsequently to prefer iridoid glycoside-containing diets even though they were detrimental to growth and survival. In contrast,J coenia larvae grew and survived better on diets with aucubin and catalpol, the two iridoid glycosides found in the host plantPlantago lanceolata (Plantaginaceae), than on diets with no iridoid glycoside or with loganin and asperuloside. The results of choice tests of diets with and without iridoid glycosides and between diets with different iridoid glycosides reflected these differences as well. These results are discussed in terms of (1) differences between generalists and specialists in their response to qualitative variation in plant allelochemical content, (2) the induction of feeding preferences, and (3) the evolution of qualitative allelochemical variation as a plant defense.  相似文献   

6.
Females ofJunonia coenia (Nymphalidae), a specialist on plants that contain iridoid glycosides, were found to use aucubin and catalpol, iridoid glycosides typical of a host plant,Plantago lanceolata (Plantaginaceae), as oviposition cues. Incorporating dried ground leaf material or pure iridoid glycosides into agar disks proved to be a very effective method of testing. In no-choice tests and choice tests, females laid more eggs on disks withP. lanceolata leaf material or iridoid glycosides, compared to agar controls. There was variation among individual females in preference for disks withP. lanceolata leaf material versus disks with iridoid glycosides. Females given a choice of three different concentrations of iridoid glycoside (0.2, 0.5, 1.0%) in the agar disks and a control laid more eggs on the disk with the highest concentration of iridoid glycoside.  相似文献   

7.
Oviposition Cues for a Specialist Butterfly–Plant Chemistry and Size   总被引:1,自引:0,他引:1  
The oviposition choice of an insect herbivore is based on a complex set of stimuli and responses. In this study, we examined the effect of plant secondary chemistry (the iridoid glycosides aucubin and catalpol) and aspects of size of the plant Plantago lanceolata, on the oviposition behavior of the specialist butterfly Melitaea cinxia. Iridoid glycosides are known to deter feeding or decrease the growth rate of generalist insect herbivores, but can act as oviposition cues and feeding stimulants for specialized herbivores. In a previous observational study of M. cinxia in the field, oviposition was associated with high levels of aucubin. However, this association could have been the cause (butterfly choice) or consequence (plant induction) of oviposition. We conducted a set of dual- and multiple-choice experiments in cages and in the field. In the cages, we found a positive association between the pre-oviposition level of aucubin and the number of ovipositions. The association reflects the butterfly oviposition selection rather than plant induction that follows oviposition. Our results also suggest a threshold concentration below which females do not distinguish between levels of iridoid glycosides. In the field, the size of the plant appeared to be a more important stimulus than iridoid glycoside content, with bigger plants receiving more oviposition than smaller plants, regardless of their secondary chemistry. Our results illustrate that the rank of a cue used for oviposition may be dependent on environmental context.  相似文献   

8.
Studies in crop species show that the effect of plant allelochemicals is not necessarily restricted to herbivores, but can extend to (positive as well as negative) effects on performance at higher trophic levels, including the predators and parasitoids of herbivores. We examined how quantitative variation in allelochemicals (iridoid glycosides) in ribwort plantain, Plantago lanceolata, affects the development of a specialist and a generalist herbivore and their respective specialist and generalist endoparasitoids. Plants were grown from two selection lines that differed ca. 5-fold in the concentration of leaf iridoid glycosides. Development time of the specialist herbivore, Melitaea cinxia, and its solitary endoparasitoid, Hyposoter horticola, proceeded most rapidly when reared on the high iridoid line, whereas pupal mass in M. cinxia and adult mass in H. horticola were unaffected by plant line. Cotesia melitaearum, a gregarious endoparasitoid of M. cinxia, performed equally well on hosts feeding on the two lines of P. lanceolata. In contrast, the pupal mass of the generalist herbivore, Spodoptera exigua, and the emerging adult mass of its solitary endoparasitoid, C. marginiventris, were significantly lower when reared on the high line, whereas development time was unaffected. The results are discussed with regards to (1) differences between specialist and generalist herbivores and their natural enemies to quantitative variation in plant secondary chemistry, and (2) potentially differing selection pressures on plant defense.  相似文献   

9.
Arbuscular mycorrhizal fungi can strongly influence the metabolism of their host plant, but their effect on plant defense mechanisms has not yet been thoroughly investigated. We studied how the principal direct defenses (iridoid glycosides) and indirect defenses (volatile organic compounds) of Plantago lanceolata L. are affected by insect herbivory and mechanical wounding. Volatile compounds were collected and quantified from mycorrhizal and non-mycorrhizal P. lanceolata plants that underwent three different treatments: 1) insect herbivory, 2) mechanical wounding, or 3) no damage. The iridoids aucubin and catalpol were extracted and quantified from the same plants. Emission of terpenoid volatiles was significantly higher after insect herbivory than after the other treatments. However, herbivore-damaged mycorrhizal plants emitted lower amounts of sesquiterpenes, but not monoterpenes, than herbivore-damaged non-mycorrhizal plants. In contrast, mycorrhizal infection increased the emission of the green leaf volatile (Z)-3-hexenyl acetate in untreated control plants, making it comparable to emission from mechanically wounded or herbivore-damaged plants whether or not they had mycorrhizal associates. Neither mycorrhization nor treatment had any influence on the levels of iridoid glycosides. Thus, mycorrhizal infection did not have any effect on the levels of direct defense compounds measured in P. lanceolata. However, the large decline in herbivore-induced sesquiterpene emission may have important implications for the indirect defense potential of this species.  相似文献   

10.
Analysis ofChelone glabra (Scrophulariaceae) by gas chromatography showed that leaves of this plant contained primarily the iridoid glycoside catalpol, and in a few individuals some aucubin was also detected. There was no difference in the iridoid glycoside content of damaged compared to undamaged plants, nor was there a difference between plants collected from a population in Leverett, Massachusetts, and those from plants in an experimental garden in Cambridge, Massachusetts. Larvae and prepupae of the sawfly,Tenthredo grandis (Tenthredinidae) contained catalpol sequestered from the larval host plant. The exuvia also contained catalpol, whereas the frass contained only aucubin. These results indicate that larvae of this sawfly selectively sequester catalpol, eliminating the aucubin in the frass.  相似文献   

11.
Damage by larvae of the buckeye butterfly (Junonia coenia) resulted in removal of 15–25% of Plantago lanceolata leaf area. Plants grown under high nutrients were larger than those grown under low nutrients. Twenty-eight days after herbivory, plants grown under high nutrients were still larger than those grown under low nutrients, and plants exposed to herbivores were significantly smaller than those not exposed to herbivores, regardless of the nutrient treatment. Damage by larvae also increased the iridoid glycoside content in the leaves and reproductive tissues of these Plantago lanceolata relative to undamaged controls. Whether damaged or undamaged, the iridoid glycoside content of P. lanceolata was highest in the reproductive tissues and lowest in the roots. Although initial concentrations of iridoid glycosides were significantly higher in plants grown under low nutrient conditions than in plants grown under high nutrient conditions, nutrient availability did not alter the phytochemical response of plants to herbivore damage. These results provide additional support for the defensive role of the iridoid glycosides in Plantago lanceolata by demonstrating that phytochemical variation is not always an incidental effect of nutrient stress but can be a direct response to damage by herbivores.  相似文献   

12.
Root herbivores can indirectly affect aboveground herbivores by altering the food quality of the plant. However, it is largely unknown whether plant genotypes differ in their response to root herbivores, leading to variable defensive phenotypes. In this study, we investigated whether root-feeding insect larvae (Agriotes sp. larvae, wireworms) induce different responses in Plantago lanceolata plants from lines selected for low and high levels of iridoid glycosides (IG). In the absence of wireworms, plants of the “high-IG line” contained approximately twofold higher levels of total IG and threefold higher levels of catalpol (one of the IG) in leaves than plants from the “low-IG line,” whereas both lines had similar levels of IG in roots. In response to wireworms, roots of plants from both lines showed increased concentrations of catalpol. Leaves of “low-IG line” plants increased catalpol concentrations in response to wireworms, whereas catalpol concentrations of leaves of “high-IG line” plants decreased. In contrast, glucose concentrations in roots of “low-IG” plants decreased, while they increased in “high-IG” plants after feeding by wireworms. The leaf volatile profile differed between the lines, but was not affected by root herbivores. In the field, leaf damage by herbivores was higher in wireworm-induced compared to noninduced “low-IG” plants and lower in wireworm-induced compared to noninduced “high-IG” plants, despite induction of catalpol in leaves of the “low-IG” plants and reduction in “high-IG” plants. This pattern might arise if damage is caused mainly by specialist herbivores for which catalpol may act as feeding stimulant rather than as deterrent. The present study documents for the first time that intraspecific variation in plant defense affects the outcome of plant-mediated interactions between root and shoot herbivores.  相似文献   

13.
This study compared different methods of tissue preparation for extraction of iridoid glycosides sequestered by three species of lepidopteran larvae. Junonia coenia is a specialist on plant species that produce iridoid glycosides, while the arctiids Estigmene acrea and Spilosoma congrua are both polyphagous and will eat plants that produce iridoid glycosides. Larvae of all three species were reared on leaves of Plantago lanceolata, which produces two primary iridoid glycosides, aucubin and catalpol. Three methods of preparing the specimens before extraction in methanol were compared in all three species: 1) larvae were flash-frozen in liquid nitrogen, 2) larvae were macerated fresh in boiling methanol, or 3) larvae were macerated fresh in room temperature methanol. A set of J. coenia larvae was oven-dried before maceration as an additional treatment for this species only. Junonia coenia sequestered the most iridoid glycosides, while E. acrea sequestered the least, and S. congrua was intermediate. Estigmene acrea was poor at sequestering catalpol. Tissue preparation method only significantly influenced iridoid glycoside recovery from S. congrua, with maceration in room-temperature methanol being the most effective of the three methods. This study shows that treatment of insects prior to iridoid glycoside extraction can influence recovery of the compounds, and that the effects of treatment may vary among different species.  相似文献   

14.
Specialist insect herbivores that sequester allelochemicals from their host plants may be unpalatable to potential predators. However, the host-plant species used may determine the degree of palatability. Spiders, including members of the family Lycosidae, are important predators of invertebrate prey. We fed buckeye caterpillars, Junonia coenia (Nymphalidae), reared on Plantago lanceolata (containing high levels of iridoid glycosides) or P. major (containing low levels of iridoid glycosides) to prairie wolf spiders, Lycosa carolinensis (Lycosidae), to determine whether the spiders found insects that sequester iridoid glycosides unpalatable. In a field experiment, spiders ate caterpillars reared on P. major significantly more often than caterpillars reared on P. lanceolata, although they attacked equal numbers of both types of prey. Spiders that bit caterpillars behind their heads or along the middle of their backs prevented caterpillars from implementing deterrent defensive strategies such as regurgitating or defecating. In a laboratory experiment, we presented spiders with P. lanceolata-reared and P. major-reared caterpillars simultaneously for eight consecutive trials. Spiders consumed P. major-reared buckeyes significantly more often than P. lanceolata-reared caterpillars. We found no evidence that the spiders learned to avoid the unpalatable prey.  相似文献   

15.
The iridoid glycoside content of individual adultEuphydryas anicia butterflies from two Colorado populations was quantitatively determined. At one site (Red Hill), larval host plants wereCastilleja integra andBesseya plantaginea, while at the other site (Cumberland Pass) a single host plant,B. alpina, was used. At Red Hill, macfadienoside and catalpol were sequestered, while at Cumberland Pass, catalpol and aucubin were sequestered. Artificial diet studies showed that larvae hydrolyzed a major iridoid ofB. plantaginea, 6-isovanilIylcatalpol, to catalpol (which was sequestered) and isovanillic acid (which was excreted). Large year-to-year and individual variation in butterfly iridoid content was established as was a female-male difference in macfadienoside vs. catalpol content. Larval host plant distributions and numbers were determined at Red Hill for two years and compared with changes in butterfly populations and sequestered iridoids.  相似文献   

16.
Thin-layer chromatography was used to follow the fates of iridoid glycosides ingested by four species of lepidopteran herbivores. These four species differed in their feeding strategy, ranging from generalist to monophagous specialist; and in their predator avoidance strategy, ranging from cryptic and palatable to aposematic and unpalatable. The fates of the iridoid glycosides ranged from sequestration by the unpalatable specialist,Euphydryas phaeton (Nymphalidae); to passage into the hemolymph and eventual elimination in the meconium by the specialistsJunonia coenia (Nymphalidae) andCeratomia catalpas (Sphingidae); to elimination of the intact compounds in the feces of the generalist feeder,Lymantria dispar (Lymantriidae).  相似文献   

17.
The ability to cope with plant defense chemicals differs between specialist and generalist species. In this study, we examined the effects of the concentration of the two main iridoid glycosides (IGs) in Plantago lanceolata, aucubin and catalpol, on the performance of a specialist and two generalist herbivores and their respective endoparasitoids. Development of the specialist herbivore Melitaea cinxia was unaffected by the total leaf IG concentration in its host plant. By contrast, the generalist herbivores Spodoptera exigua and Chrysodeixis chalcites showed delayed larval and pupal development on plant genotypes with high leaf IG concentrations, respectively. This result is in line with the idea that specialist herbivores are better adapted to allelochemicals in host plants on which they are specialized. Melitaea cinxia experienced less post-diapause larval and pupal mortality on its local Finnish P. lanceolata than on Dutch genotypes. This could not be explained by differences in IG profiles, suggesting that M. cinxia has adapted in response to attributes of its local host plants other than to IG chemistry. Development of the specialist parasitoid Cotesia melitaearum was unaffected by IG variation in the diet of its host M. cinxia, a response that was concordant with that of its host. By contrast, the development time responses of the generalist parasitoids Hyposoter didymator and Cotesia marginiventris differed from those of their generalist hosts, S. exigua and C. chalcites. While their hosts developed slowly on high-IG genotypes, development time of H. didymator was unaffected. Cotesia marginiventris actually developed faster on hosts fed high-IG genotypes, although they then had short adult longevity. The faster development of C. marginiventris on hosts that ate high-IG genotypes is in line with the “immunocompromized host” hypothesis, emphasizing the potential negative effects of toxic allelochemicals on the host’s immune response.  相似文献   

18.
Iridoid glycosides, terpene-derived compounds found in many plant families, protect the plant against generalist and nonadapted specialist insect herbivores, fungi, and bacteria. Antirrhinoside, a common iridoid glycoside in the tribe Antirrhineae (Scrophulariaceae), was rapidly labeled when mature leaves ofAsarina scandens were exposed to14CO2. Antirrhinoside was translocated in the phloem along with sucrose. Radiolabeled antirrhinoside appeared in the petiole of the labeled leaf within 20 min of the beginning of the labeling period. Antirrhinoside was also found in phloem sap obtained by the EDTA method.  相似文献   

19.
Induction of allelochemicals is one way that plants efficiently deploy defenses against herbivory. In two separate experiments we investigated the time course of this inductive response and the importance of the timing of herbivory for Plantago lanceolata (Plantaginaceae). We found a localized induced response of catalpol and the ratio of catalpol to total iridoid glycosides in damaged leaves that was evident at d 6 after caterpillars of the specialist Junonia coenia were put onto the plants. On the whole plant level, we detected small, but significant changes in the iridoid glycoside metabolism of P. lanceolata on several different days following herbivory. We also found considerable change in the amounts of allelochemicals produced during P. lanceolata's ontogeny. This ontogenetic effect might help to explain some of the reasons why induction may be difficult to detect in P. lanceolata. We also investigated the importance of the timing of herbivory on P. lanceolata's inductive response, but neither herbivory after 5 wk of growth nor after 6 or 7 wk of growth induced an increase in aucubin or catalpol.  相似文献   

20.
Plant secondary chemistry can vary among plant tissues, individuals, and populations, and this variation has population-level consequences for upper trophic levels. In this study, we examined the multi-trophic consequences of variation in iridoid glycosides, which are a component of plant defense against generalist herbivores and also contribute to the unpalatability of sequestering herbivores to both vertebrate and invertebrate predators. Several populations of Catalpa bignonioides were located and examined for the presence of the Catalpa Sphinx, Ceratomia catalpae, a specialist herbivore of Catalpa. We quantified iridoid glycoside content in Catalpa Sphinx caterpillars and in damaged and undamaged C. bignonioides leaves. Overall, leaves of C. bignonioides that were damaged by Catalpa Sphinx caterpillars contained lower concentrations of two major iridoid glycosides, catalpol and catalposide, than leaves of undamaged trees from naturally occurring populations. Catalpa Sphinx caterpillars sequester only catalpol, and increasing catalpol and catalposide concentrations in leaves were associated with increased catalpol sequestration by caterpillars. The parasitoid Cotesia congregata develops successfully inside catalpol-sequestering Catalpa Sphinx caterpillars, and we examined parasitoid larvae for the presence of catalpol. Parasitoid larvae dissected from caterpillars contained catalpol, but at lower concentrations than their host caterpillars. The variation in chemical defense documented here has rarely been documented over multiple trophic levels, but such resolved systems are ideal for examining competing hypotheses about the effects of plant secondary metabolites on higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号