首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Backscattering properties of boreal forests at the C- and X-bands   总被引:1,自引:0,他引:1  
The backscattering properties of boreal forests are studied using empirical airborne and spaceborne radar data from Finland. Airborne measurements were carried out in the summer of 1992 by the HUTSCAT scatterometer at the Teijo test area in southern Finland. The HUTSCAT scatterometer is an eight-channel helicopter-borne profiling radar operating at the C- and X-bands. The ranging capability of the HUTSCAT scatterometer was employed in the semiempirical modeling of forest backscatter. The backscatter profile information was used in the analysis of the canopy transmissivity and the canopy backscattering coefficient by distinguishing backscattering contributions from the canopy and the ground. Additionally, ERS-1 C-band satellite SAR measurements were obtained for the Teijo test area and for the reference test area in Sodankyla in northern Finland. The radar results were compared with operational ground-based forest assessment data on forest compartments (stands) of the area. The key parameter investigated was the stem (bole) volume per hectare. The results obtained show the behavior of the canopy transmissivity and the canopy backscatter as a function of stem volume (directly related to the forest biomass). The influence of seasonal and diurnal changes on, and the effects of the changes in soil moisture to the backscattering coefficient were also investigated  相似文献   

3.
Mapping biomass of a northern forest using multifrequency SAR data   总被引:1,自引:0,他引:1  
The results of mapping standing biomass for a northern forest in Maine, using NASA/JPL AIRSAR polarimetric radar data, is presented. By examining the dependence of backscattering on standing biomass using backscatter modeling and aircraft data, it was determined, in agreement with other recent reports, that the cross-polarized (HV) data from longer wavelengths (L, P-band) were the best radar channels for mapping total above-ground forest biomass. The radar signal appeared to lose sensitivity to changes in biomass for dry biomass levels beyond about 15 kg/m2 (150 Mton/Ha). The ratio of HV backscattering from two bands, a longer wavelength P (wavelength=68 cm) or L band (24 cm) to a shorter wavelength C band (6 cm), enhanced the correlation of the image signature to standing biomass (r2=0.83 for P/C and r2 =0.79 for L/C) and showed increased sensitivity to dry biomass beyond 15 kg/m2  相似文献   

4.
Synthetic aperture radar (SAR) data were acquired over Bonanza Creek Experimental Forest (Alaska) in March 1988 under thawed and frozen conditions. For five stands analyzed, L-band backscatter at 42°-45° incidence angle was 2.7-6.9 dB smaller under frozen than under thawed conditions for white spruce and balsam poplar, with the largest difference at HV and the smallest at HH polarization. The differences were smaller for a stand of small black spruce. The VV-HH phase differences observed by SAR were ≈0° for all the stands. Ground data were used to parameterize the Santa Barbara canopy backscatter model. For the white spruce and balsam poplar stands under thawed conditions, simulations agreed with the SAR data within the calibration uncertainty. The model underestimated the HH, HV, and VV backscatter for all five stands under frozen conditions, and for the black spruce stand under thawed conditions. The modeled VV-HH phase differences were close to 0° for all the stands except the black spruce stand. The discrepancies in model predictions of backscatter and phase difference were attributed to inadequate surface backscatter modeling. Model results supported the hypothesis that the weaker backscatter from frozen stands was because of the smaller dielectric constant of the frozen trees  相似文献   

5.
Airborne SAR data gathered by the NASA/JPL three-frequency, polarimetric, radar system in winter, spring, and summer over the Bonanza Creek Experimental Forest, near Fairbanks, AK, are compared to estimates of whole-tree aboveground dry biomass from 21 forest stands and two clear-cuts. While C-band radar backscatter shows little sensitivity to biomass, L- and P-band radar backscatter increase by more than 6 dB when biomass increases from 5 to 200 tons/ha. Using second-order polynomial regressions, biomass values are predicted from the radar at L- and P-band and compared to actual biomass values. At P-band HV-polarization, the error in predicted biomass is about 30% of the actual biomass. When HV-, HH-, and VV-polarization are used together in the regression, the error in predicted biomass is about 20%. Errors obtained using L-band data are a few percents larger. These errors are caused by uncertainties in actual stand biomass estimates, significant inner-stand spatial variations in biomass, unusual conditions of forest stands following natural disturbances, along with interactions of the radar signals with a complex three-dimensional structure of the canopy. Multiple incidence angle data reveal that the incidence angle &thetas; i of the radar illumination is also a factor influencing the retrieval of biomass, even at HV-polarization, when &thetas;i>50° or &thetas;i<25°. Finally, the radar response of the forest-and thereby the regression curves for biomass retrieval-are dependent on the seasonal and environmental conditions  相似文献   

6.
Relating forest biomass to SAR data   总被引:15,自引:0,他引:15  
The authors present the results of an experiment defined to demonstrate the use of radar to retrieve forest biomass. The SAR data were acquired by the NASA/JPL SAR over the Landes pine forest during the 1989 MAESTRO-1 campaign. The SAR data, after calibration, were analyzed together with ground data collected on forest stands from a young stage (eight years) to a mature stage (46 years). The dynamic range of the radar backscatter intensity from forest was found to be greatest at P-band and decreased with increasing frequencies. Cross-polarized backscatter intensity yielded the best sensitivities to variations of forest biomass. L-band data confirmed past results on good correlation with forest parameters. The most striking observation was the strong correlation of P-band backscatter intensity to forest biomass  相似文献   

7.
The authors compared the output of the Santa Barbara microwave canopy backscatter model to polarimetric synthetic aperture radar (SAR) data for three ponderosa pine stands (ST-2, ST-11, and SP-2) with discontinuous tree canopies near Mt. Shasta, California, at P-band (0.68-m wavelength), L-band (0.235-m wavelength), and C-band (0.056-m wavelength). Given the SAR data calibration uncertainty, the model made good predictions of the P-HH, P-VV, L-HH, C-HH, and C-HV backscatter for the three stands, and the P-HV and L-HV backscatter for ST-2 and SP-2. The model underestimated C-VV for the three stands, and P-HV, L-HV, and L-VV backscatter for ST-11. The observed and modeled VV-HH phase differences were ≃0° for the three stands at C-band and L-band, and for SP-2 at P-band. At P-band, the observed and modeled VV-HH phase differences were at least -80° for ST-2 and ST-11, which indicates that double-bounce scattering contributes to the total backscatter for the two stands  相似文献   

8.
Radar modeling of a boreal forest   总被引:2,自引:0,他引:2  
The authors report on the use of microwave modeling, ground truth, and synthetic aperture radar (SAR) data to investigate the characteristics of forest stands. A mixed coniferous forest stand has been modeled at SAR frequencies (P-, L-, and C-bands). The extensive measurements of ground truth and canopy geometry parameters were performed in a 200 m-square hemlock-dominated plot inside a forest. Hemlock trees in the forest are modeled by characterizing tree trunks, branches, and needles (leaves) with randomly oriented, lossy dielectric cylinders whose area and orientation distributions are prescribed. The distorted Born approximation is used to compute the backscatter at P-, L-, and C-SAR frequencies  相似文献   

9.
The potential of synthetic aperture radar (SAR) data for retrieving the above-ground and component (e.g., branch, trunk) biomass of mixed-species forests (including woodlands) typical to subtropical Queensland, Australia, was evaluated using a wave scattering model based on that of Durden et al. (1989). The model was parameterized using field data collected for nine forest types, which were selected through combined analysis of 1 : 4000 aerial photographs and light detection and ranging data. The simulated SAR backscatter data demonstrated a good correspondence at most frequencies and polarizations with Airborne SAR data. Analysis of scattering mechanisms revealed dominance of C-band horizontal-vertical (HV) volume scattering and increases with small-branch/foliage biomass, dominance of L- and P-band HH trunk-ground scattering and increases with trunk biomass, and dominance of L-band HV volume (branch) scattering and increases with large-branch biomass. The study concluded that above-ground biomass estimated using empirical relationships with selected SAR channels will be more reliable for forests of similar structural form due to dominance of microwave interaction with particular biomass components and the strength and consistency of relationships between these and the affiliated components that represent the total. In mixed-species forests, retrieval will be compromised by interaction with a greater diversity of structures and variability in relationships between structural components. Although empirical relationships with selected combinations of channels (e.g., L-band HH/HV) might allow retrieval of component and total biomass of forests containing trees of similar form (e.g., as mapped using Landsat sensor data), the use of SAR inversion models was considered a more appropriate route for retrieving the biomass of forests containing a mix of structural forms.  相似文献   

10.
The authors present the results of an experiment using the NASA/JPL DC-8 AIRSAR (aircraft synthetic-aperture radar) over a coniferous forest near Mt. Shasta (California) in 1989. Calibration devices were deployed in clearings and under the forest canopy and passes at 20°, 40°, and 55° incidence angles were made with the AIRSAR. A total of eight images at differing incidence angles have been processed and calibrated. The multipolarization multifrequency data were examined, and it was found that the C-band cross section averaged over like and cross polarizations is the best parameter for distinguishing between two stands with differing forest biomass. The average cross section at P- and L-bands is useful only for smaller incidence angles. Parameters describing the polarization behavior of the scattering were primarily useful in identifying the dominant scattering mechanisms for forest backscatter  相似文献   

11.
Reports the results of an experiment performed to investigate the changes of C-band microwave backscatter as a function of season in northern forests. The purpose was to determine whether seasonal changes can be used to increase the information content of single-polarization C-band SAR data. Data were acquired in four consecutive seasons along the same east-west line with a pixel spacing of 3.9 m (azimuth) by 4.7 m (range) with incidence angles ranging from 45° to 75°. Calibration was carried out within each scene, allowing seasonal changes in relative backscatter and absolute dynamic range to be studied. The investigation demonstrated that the entire dynamic range of mean C-HH backscatter values of forest stands was never more than about 6 dB. The range exhibited seasonal variations, from only 3.5 dB in February, to 6.0 dB in May. The seasonal changes in dynamic range of the nondeciduous softwoods are hypothesized to be dominated by changes in the dielectric constant of the woody and foliar parts of the trees. Seasonal changes of deciduous backscatter relative to the softwoods allows multitemporal SAR data to be used to distinguish between hardwood and softwood species  相似文献   

12.
Statistics on the backscatter coefficient σ0 from the Ku-band Seasat-A Satellite Scatterometer (SASS) collected over the world's land surfaces are presented. This spaceborne scatterometer provided data on σ0 between latitude 80° S and 80° N at incidence angles up to 70°. The global statistics of vertical (V) and horizontal (H) polarization backscatter coefficients for 10° bands in latitude are presented for incidence angles between 20° and 70° and compared with the Skylab and ground spectrometer results. Global images of the time-averaged V polarization σ0 at a 45° incidence angle and its dependence on the incidence angle are presented and compared to a generalized map of the terrain type. Global images of the differences between the V an H polarization backscatter coefficients are presented and discussed. The most inhomogeneous region, which contains the deserts of North Africa and the Arabian Peninsula, is studied in greater detail and compared with the terrain type  相似文献   

13.
Dependence of radar backscatter on coniferous forest biomass   总被引:11,自引:0,他引:11  
Two independent experimental efforts have examined the dependence of radar backscatter on above-ground biomass of monospecie conifer forests using polarimetric airborne SAR data at P-, L- and C-bands. Plantations of maritime pines near Landes, France, range in age from 8 to 46 years with above-ground biomass between 5 and 105 tons/ha. Loblolly pine stands established on abandoned agricultural fields near Duke, NC, range in age from 4 to 90 years and extend the range of above-ground biomass to 560 tons/ha for the older stands. These two experimental forests are largely complementary with respect to biomass. Radar backscatter is found to increase approximately linearly with increasing biomass until it saturates at a biomass level that depends on the radar frequency. The biomass saturation level is about 200 tons/ha at P-band and 100 tons/ha at L-band, and the C-band backscattering coefficient shows much less sensitivity to total above-ground biomass  相似文献   

14.
In the boreal forest zone and in many forest areas, there exist gaps between the forest crowns. For example, in Finland, more than 30% of the first pulse data of laser scanning reflect directly from the ground without any interaction with the canopy. By increasing the number of pulses, it is possible to have samples from each individual tree and also from the gaps between the trees. Basically, this means that several laser pulses can be recorded per m2. This allows detailed investigation of forest areas and the creation of a three-dimensional (3D) tree height model. Tree height model can be calculated from the digital terrain and crown models both obtained with the laser scanner data. By analyzing the 3D tree height model by using image vision methods, e.g., segmentation, it is possible to locate individual trees, estimate individual tree heights, crown area, and, by using that data, to derive the stem diameter, number of stems, basal area, and stem volume. The advantage of the method is the capability to measure directly physical dimensions from the trees and use that information to calculate the needed stand attributes. This paper demonstrates for the first time that it is possible to accurately estimate standwise forest attributes, especially stem volume (biomass), using high-pulse-rate laser scanners to provide data, from which individual trees can be detected and characteristics of trees such as height, location, and crown dimensions can be determined. That information can be applied to provide estimates for larger areas (stands). Using the new method, the following standard errors were demonstrated for mean height, basal area and stem volume: 1.8 m (9.9%), 2.0 m2/ha (10.2%), and 18.5 m 3/ha (10.5%), respectively  相似文献   

15.
In this paper, a model for prediction of radar backscatter from coniferous forests in the VHF and UHF band is proposed. The model includes the double-bounce scattering originating from vertical stems standing on an undulating ground surface and is based on a physical-optics approach. The model can be used to assess the importance of ground topography in synthetic aperture radar (SAR) imagery of forests, and it is applicable to SAR systems using horizontally transmit and receive polarization (HH). The model was validated against data from the airborne SAR systems CARABAS-II and LORA. Precision measurements of ground topography and forest characterization at a single tree level were used as model input to simulate SAR images. The simulated images were compared to radar data in the frequency bands 22–82 and 225–470 MHz, and it was found that the model could predict much of the variation in backscatter observed in images ($R^{2} = hbox {0.44}$ and 0.65 at best, for the lower and higher frequency band, respectively), which should be compared to $R^{2} approx hbox {0.1}$ if the same model, but assuming a flat ground, was used. The results thus indicate that ground topography must be considered when predicting the variations in backscatter in the SAR images studied. The model did, however, fail to predict the absolute values of the backscattered intensity. The reason for the discrepancy is believed to be the value chosen for stem dielectric constant and unmodeled effects due to wave attenuation, tilting stems, and small-scale surface roughness.   相似文献   

16.
As part of the intensive field campaign (IFC) for the Boreal forest ecosystem-atmosphere research (BOREAS) project in August 1993, the NASA/JPL AIRSAR covered an area of about 100 km×100 km near the Prince Albert National Park in Saskatchewan, Canada. At the same time, ground-truth measurements were made in several stands which have been selected as the primary study sites. This paper focuses on an area including jack pine stands in the Nipawin area near the park. Upon examining the AIRSAR data from stands of old and young jack pine (OJP and YJP), distinct signatures are observed for each of the forest types at various frequencies and polarizations, in particular, at P-band HH. The authors use a forest scattering model in conjunction with the ground-truth measurements to explain such behavior. The forest model includes the major scattering mechanisms by taking the forest component interactions into account. The contribution from each of the scattering mechanisms to the total backscatter is calculated and their differences for OJP and YJP stands are evaluated. The results are used to discuss the effect of the physical properties of the forest components in each stand on radar backscatter. They are also used to show that it is not only the backscatter level but also the relative contribution from various scattering mechanisms that will help in quantitative interpretation of SAR data. This work is mainly intended as a precursor to the authors ongoing work which uses a mechanism-specific inversion technique to retrieve forest parameters from SAR data for these BOREAS sites  相似文献   

17.
Preliminary analysis of ERS-1 SAR for forest ecosystem studies   总被引:3,自引:0,他引:3  
The authors examine an image obtained by the C-band VV-polarized ERS-1 SAR with respect to potential land applications. A scene obtained near noon on Aug. 15, 1991, along the US-Canadian border near Sault Ste. Marie is calibrated relative to an array of trihedral corner reflectors and active radar calibrators distributed across the swath. Extensive contemporaneous ground observations of forest stands are used to predict σ° at the time of the SAR overpass using a first-order vector radiative transfer model (MIMICS). These predictions generally agree with the calibrated ERS-1 data to within 1 dB. It is demonstrated that the dynamic range of σ° is sufficient to perform limited discrimination of various forest and grassland communities even for a single-date observation. Furthermore, it is demonstrated that retrieval of near-surface soil moisture is feasible for grass-covered soils when plant biomass is less than 1 tonne/ha  相似文献   

18.
Temporal variations of environmental research satellite (ERS)-1/2 backscattering coefficients acquired over a mixed deciduous forest are analyzed with an aim toward relating the observed radiometric variations to changes either in the vegetation seasonal cycle or in the structural parameters. Overall, the results are somewhat pessimistic. Temporal σ0 plots show chaotic variations, which are difficult to relate to the seasonal changes of forest parameters and particularly to the foliage dynamics. Furthermore, no distinction between stand types or between deciduous species is found to be possible, and nearly identical temporal plots are observed for all the stands, suggesting that the radar signatures are partly under the influence of nonforest parameters. Besides, the effect of meteorological events are difficult to evaluate. Discrimination between deciduous stands and conifers is nevertheless possible, since the radiometric difference between the two species is about 1 dB. With an overall sensitivity to standing biomass of about 0.1 dB/50 tons per hectare, ERS SARs can be considered as almost insensitive to biomass variations. For the young stands, the C-band response is found to be dominated by stand structure, whereas the backscattering coefficient saturates for biomass values higher than 50 and 80 t DM ha-1 for deciduous and conifers, respectively  相似文献   

19.
The seasonal changes of the C-band backscattering properties of boreal forests are investigated by applying 1) a semiempirical forest backscattering model and 2) multitemporal ERS-1 SAR data from two test areas in Finland. The semiempirical modeling of forest canopy volume backscattering and extinction properties is based on high-resolution data from the authors' ranging scatterometer HUTSCAT. The response of ERS-1 SAR to forest stem volume (biomass) and other forest characteristics is investigated by employing the National Forest Inventory sample plots, stand-wise forest inventory data and LANDSAT- and SPOT-based digital land use maps. The results show that the correlation between the backscattering coefficient and forest stem volume (biomass) varies from positive to negative depending on canopy and soil moisture. Additionally, the seasonal snow cover and soil freezing/thawing effects cause drastic changes in the radar response. A novel method for the estimation of forest stem volume (biomass) is introduced. This technique is based on the use of: 1) multitemporal ERS-1 SAR data; 2) reference sample plot information; and 3) the semiempirical backscattering model. It is shown that the multitemporal ERS-1 SAR images can be successfully used for estimating the forest stem volume. The effects of soil moisture variations to ERS-1 SAR results have been analyzed using hydrological soil moisture model and in situ data. The results indicate that the semiempirical model can he used for predicting the soil and canopy moisture variations in ERS-1 images  相似文献   

20.
The sensitivity of radar backscatter to the amount of intercepted rain in temperate deciduous forests is analyzed to determine the feasibility of retrieval of this parameter from satellite radar data. A backscatter model is validated with X-band radar measurements of a single tree exposed to rain. A good agreement between simulation and measurements is observed and this demonstrates the ability of radar to measure the amount of intercepted rain. The backscatter model is next applied to simulate different satellite radar configurations. To account for forest variability, the backscatter difference between a wet and dry forest canopy is calculated for four deciduous tree species, above a wet and a dry soil. On average, the simulated backscatter of a wet forest canopy is 1 dB higher than the backscatter of a dry forest canopy at co-polarized L-band and 2 dB at co-polarized C and X-band. The simulated sensitivity is in agreement with observations. It is argued that current satellites can retrieve the amount of intercepted rain at best with a reliability of 50%, due to the variability in soil moisture, species composition and system noise. The authors expect that the reliability will improve with the launch of the next generation radar satellites. The results of this analysis may also be used to assess the influence of rain, fog or dew upon other radar applications for temperate deciduous forests  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号