首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于小波包的RBF神经网络网络流量混沌预测   总被引:1,自引:0,他引:1  
为了提高网络流量预测准确率,提出了基于小波包的RBF神经网络网络流量混沌预测法(WPCRBF).充分考虑到真实网络流量的周期性和噪声的影响,提出了一种改进的时间窗口法来计算最佳嵌入维和时间延迟,并用于上述预测方法中.以真实网络流量数据为实验数据,分别用CRBF、基于小波的RBF神经网络混沌预测法(WCRBF)与提出的WPCRBF进行预测,实验结果表明,该方法能够较准确地对网络流量进行预测.  相似文献   

2.
参数可变系统时间序列短期预测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
肖芬  高协平 《软件学报》2006,17(5):1042-1050
时间序列预测是一类非常重要的问题,但基本上局限于参数不可变问题的研究,而对实际问题中经常出现的更重要的参数可变系统的预测,由于构成几乎所有已有预测技术基础的Taken嵌入定理不再成立,所以这方面的研究成果极少.使用一种将(多)小波变换与反向传播神经网络相结合的新型网络结构--(多)小波神经网络,尝试对参数可变时间序列的预测.因为(多)小波神经网络的误差函数是一个凸函数,这在一定程度上可以避免经典神经网络容易陷入局部极小、收敛速度慢等问题.对著名的Ikeda参数可变系统的实验表明,多小波神经网络的预测性能较单小波神经网络要好,而单小波神经网络的性能较BP网要好.因此,该方法不失为时间可变系统预测的一种好的推荐.  相似文献   

3.
网络流量预测对网络安全、网络管理等具有重要的意义。针对网络流量的行为特征,提出了基于小波变换的PCNN网络流量预测算法。对预处理的网络流量进行小波分解,利用PCNN模型预测获得的近似系数和细节系数,通过小波逆变换对预测的小波系数进行重构,得到预测的网络流量。实验结果表明,与其他的三种网络流量预测算法相比,算法得到较小的残差,取得了较好的预测效果。  相似文献   

4.
张晗  王霞 《计算机应用研究》2012,29(8):3134-3136
提出一种基于小波分解的网络流量时间序列的分析和预测方法。将非平稳的网络流量时间序列通过小波分解成为多个平稳分量,采用自回归滑动平均方法分别对各平稳分量进行建模,将所有分量的模型进行组合,得到原始非平稳网络流量时间序列的预测模型。在仿真实验中,利用网络流量文库的时间序列数据建立了预测模型,并对其进行独立测试检验。仿真结果表明,本预测方法提高了网络流量时间序列的预测准确率,是一种有效、稳健的网络流量预测方法。  相似文献   

5.
基于小波方法的Internet流量的预测建模   总被引:3,自引:0,他引:3  
曹雪  魏恒义  程竹林  曾明 《计算机工程》2003,29(15):56-57,114
小波模型是自相似过程的流量模型,Internet流量数据属于非平稳的时问序列,小波变换可将非平稳的时间序列变为多个平稳的分量,再对分量采用相应的回归模型进行预测,然后将各个预测分量利用小波重构成最终的预测流量。通过实例具体说明了如何利用小波变换对Internet流量数据进行分析、预测。  相似文献   

6.
基于小波神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
本文提出了一种用小波神经网络进行混沌时间序列预测的方法,并介绍了小波神经网络的基本构造和学习算法。在此基础上,通过由Logistic方程产生的混沌时间序列对该网络进行模拟实验,证明了该神经网络具有较好的预测效果。  相似文献   

7.
神经网络的预测性能的优化分析   总被引:4,自引:3,他引:4  
神经网络的应用广泛领域就是预测,主要是利用它的函数逼近映射能力进行预测。分析了影响神经网络预测精度的因素,提出了几种提高神经网络预测性能的方法,为提高神经网络预测精度提供了一定的思想和方法。  相似文献   

8.
一种网络流量预测的小波神经网络模型   总被引:11,自引:1,他引:11  
雷霆  余镇危 《计算机应用》2006,26(3):526-0528
结合小波变换和人工神经网络的优势,建立一种网络流量预测的小波神经网络模型。首先对流量时间序列进行小波分解,得到小波变换尺度系数序列和小波系数序列,以系数序列和原来的流量时间序列分别作为模型的输入和输出,构造人工神经网络并且加以训练。用实际网络流量对该模型进行验证,结果表明,该模型具有较高的预测效果。  相似文献   

9.
采用小波神经网络对网络流量数据的时间序列进行建模与预测。针对BP神经网络预测准确率不太理想的情况,将小波理论引入BP神经网络,引用小波理论中多分辨分析技术对基于BP神经网络的模型进行改进,建立了基于小波神经网络的IP网络流量预测模型。该模型利用小波多分辨分析分解信号,再用已分解的信号序列来训练BP神经网络。实验结果表明,小波神经网络比BP神经网络对网络流量的预测结果精度更高、性能更好,利用小波神经网络预测网络流量是一种可行、有效的方法。  相似文献   

10.
小波方法在因特网数据流量预测建模中的应用   总被引:2,自引:0,他引:2  
文章回顾了传统话务理论数学模型—Poisson分布;指出了Poisson模型不适应高速发展的因特网的业务数据流量分析;分析了小波变换在Internet数据流量分析、预测中的作用。  相似文献   

11.
基于离散小波变换的时间序列数据挖掘   总被引:2,自引:0,他引:2  
提出了一种利用离散小波变换进行时间序列分析预测的新方法。该方法的特点主要是在小波系数的选取依据上与以往方法不同,以往方法大多是选取前k个位置的系数或者是选取数值最大的k个位置的系数,其依据是能量保持;本文方法的选取依据是各系数在训练集数据上的分类能力大小,即通过对已知类别的训练集的学习过程,找出使得类内距离最小、类间距离最大的若干系数作为特征系数。对于未知类别的时间序列,根据特征系数计算出该序列属于各个类别的隶属度,隶属度最高的类别即为预测结果。实验结果表明,本方法用于时间序列分析预测,显示出了较高的效率和准确性。  相似文献   

12.
基于Huang变换和BP神经网络的时间序列预测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
Huang变换是近几年发展起来处理非平稳信号的新方法。时间序列同信号一样具有非平稳的特性,研究了Huang变换在时间序列预测中的应用。首先将时间序列通过Huang变换分解为有限个固有模态函数和一个残余函数之和,每一个的固有模态函数反映了时间序列在各个尺度的特征,而残余函数则很好地反映了时间序列的总体趋势,然后应用BP神经网络对各个固有模态函数和残余函数进行预测,最后将所有的预测值重构叠加,就得到原始时间序列的预测值。实例证明,基于Huang变换和BP神经网络的时间序列的预测方法,优于小波变换和神经网络相结合的预测方法,提高了预测精度。  相似文献   

13.
针对股票价格构成的时间序列具有随机性与偶然性,传统的单一模型很难满足建模要求的问题,提出一种基于小波和神经网络相结合的股票预测模型.将股票价格进行小波分解成尺度不同的分层数据,分别利用Elman神经网络预测各层数据,将各层的预测结果使用BP神经网络合成最终预测结果.通过实际的股票价格对该模型进行验证,结果表明,该组合模型具有较高的预测效果,可以提高股票价格预测的准确率.  相似文献   

14.
杨颖  陈德华 《微机发展》2006,16(6):193-195
利用多分辨分析方法,结合小波分析和神经网络思想构建一种新型的神经网络模型———小波神经网络,解决了传统神经网络中隐层节点数难以确定的问题。通过对股票的预测,说明该方法能有效地提高预测精度,避免了人工神经网络模型的固有缺陷。  相似文献   

15.
基于小波神经网络的混沌时间序列分析与相空间重构   总被引:14,自引:1,他引:14  
探讨了小波神经网络在混沌时间序列分析与相空间重构中的应用,通过混沌时间序列单步预测与多步预测的例子,比较了小波神经网络与MLP的逼近和收敛性能,对最近提出的一种多分辨率学习策略进行了改进,利用连续3次样条小和正交Daubechies小波代替Haar小波对时间序列做小波分解;用改进的学习算法训练网络并应用到混沌序列相空间重构中,实验结果表明,小波神经网络比MLP和ARMA模型具有更强大的逼近能力,因而十分适合应用于时间序列分析中;多分辨率学习算法可作为分析复杂混沌时间序列的一种重要工具。  相似文献   

16.
对时间序列的相似性搜索在很多新的数据库应用中的地位变得越来越重要.使用小波变换方法缩减维度是解决高维时间序列查询的一个有效方法.给出小波变换在时间序列相似性查找中对距离上下界的一个严格估计,同时说明传统的算法只是下界的一部分.根据给出的小波变换的下界,相对于传统的算法,可以排除更多的不相似序列.根据给出的上界,可以直接判断出两条序列是否相似,进一步减少需要验证的原始序列的个数.实验结果表明,相对于传统的算法,提出的上下界可以大幅度提高过滤效果,减少查询时间.  相似文献   

17.
王露珊  刘兵  刘勇 《计算机应用》2007,27(3):570-573
使用小波变换缩减维度是解决高维时间序列查询的一个有效方法。传统的算法均使用变换后小波序列的前k个系数作为原始时间序列的一个近似估计。但是由于选择前k个系数不一定能很好地近似原始序列集合。给出相关定理,说明选择小波系数集合的列平方和最大的k列,可以更好近似原始序列集合。实验结果表明,相对于传统算法,该方法可以更好地缩小相对误差。  相似文献   

18.
提出一种基于小波矩阵变换的时序序列相似度量方法,并对该方法应用于电力电子装置故障波形相似性度量进行了抗噪性、灵敏度及相似值准确性分析.方法首先采用小波变换将时序序列压缩到小波子空间,再由K-L变换(Karhunen-Loveve transformation)提取样本时序序列的特征向量和正交基,然后将分析时序序列通过内积变换映射到正交基中得到分析特征向量,最后计算两个特征向量之间的欧式距离以判定时序序列的相似度.以电力电子装置故障波形的相似度量为例,实验表明该方法特征向量维数低,抗噪性好于直接小波法30倍,灵敏度是直接小波法1/3,相似值准确性好于小波奇异值法.该方法对于大规模时序序列的相似匹配和检索具有潜在的应用价值.  相似文献   

19.
利用二维连续小波变换(CWT),结合时间序列分析的特点,对时间序列数据进行分析。从对多频率信号、突变信号以及噪声数据的容错性三个方面的分析来对利用二维连续小波变换方法在时间序列分析中的应用进行了研究,主要分析方式以趋势分析为主,最后通过对实验结果的分析得到良好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号