首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
透明纳米级苯乙烯-丙烯酸酯微乳液的制备   总被引:2,自引:0,他引:2  
采用自制的属于Gemini型的特殊乳化剂KD-1用于苯乙烯丙烯酸酯微乳液的聚合。研究了反应温度、乳化剂用量和单体含量对微乳液聚合的影响。结果表明,只使用质量分数为0 95%~1 60%的单一阴离子型乳化剂KD-1就可得到较高固含量(质量分数为30%~50%)的透明纳米级苯乙烯丙烯酸酯微乳液,并保持微胶乳平均粒径为40~60nm。与常规苯乙烯丙烯酸酯乳液相比,其粒径小,最低成膜温度有所降低,而玻璃化转变温度有所提高。  相似文献   

2.
高固含量聚丙烯酸酯纳米微乳液的制备与性能研究   总被引:1,自引:0,他引:1  
以自制属于Gemini型的表面活性剂KD-1为乳化剂,采用微乳液聚合方法,用于聚丙烯酸酯微乳液的聚合研究.考察了乳化剂KD-1用量、去离子水用量及反应温度对微乳液聚合反应的影响,对制备的微乳液进行流体力学性能的测定,并将制备的微乳液和胶膜与常规方法制备的微乳液和胶膜进行性能比较.结果表明,在KD-1用量40g,去离子水用量120 g,过硫酸铵引发剂用量0.46 g,反应温度80℃优化条件下制备的聚丙烯酸酯微乳液,固含量达40.50%,混合单体与乳化剂比例达20.6:1,转化率97%以上,微乳液平均粒径34.3 nm,克服了目前微乳液聚合中存在乳化剂含量高,而乳液中固含量低的两大缺陷.力学性能测定说明,制备的聚丙烯酸酯微乳液属于膨胀性流体.与常规方法制备的微乳液相比,粒径小,表面张力低,成膜温度有所降低,而玻璃化温度有所提高,透明度、附着力、耐水性、耐冲击强度等性能更优异.  相似文献   

3.
<正>TQ331.47 201009228苯丙微乳液的聚合工艺研究[刊]/张恒,纪秀丽…(青岛科技大学)//合成材料老化与应用.-2009,38(4).-7~11用半连续种子微乳液聚合法,制备了固含量为40%的聚丙烯酸酯微乳液,研究了乳化剂种类与用量、引用剂种类与用量、反应温度、搅拌速度和单体滴加速度对丙烯酸酯类聚合体系粒径和乳液性能的影响。结果表明,制备聚丙烯酸酯微乳液的最佳聚合工艺条件为:单体采用饥饿态连续滴加,滴加时间5h;ms-1为乳化剂,质量分数为6%~8%;  相似文献   

4.
聚丙烯酸酯/TiO2-SiO2纳米复合胶乳的制备与性能研究   总被引:1,自引:0,他引:1  
用溶胶-凝胶法制得纳米TiO2-SiO2溶胶,与纳米级聚丙烯酸酯微胶乳直接共混.制备了聚丙烯酸酯/TiO2-SiO2纳米复合胶乳,经制膜、干燥处理得纳米杂化材料。复合胶乳粒子外观呈球形,平均粒径约120nm;用红外光谱分析了聚丙烯酸酯微胶乳膜和复合胶乳膜吸收峰特征。考察了纳米TiO2-SiO2含量对纳米复合胶乳膜光学、热学及力学性能的影响,实验结果表明,当TiO2-SiO2含量为1.0%~2.0%时,能使该纳米复合胶乳膜具有很好的紫外线屏蔽性和热稳定性,并使纳米复合胶乳膜的拉伸强度和断裂伸长率等力学性能也得到提高。  相似文献   

5.
带有环氧基的聚丙烯酸酯乳液合成及固砂性能研究   总被引:1,自引:0,他引:1  
以甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸甘油酯和丙烯酸-2-乙基己酯(EHA)等为原料,通过乳液聚合合成了带有环氧基的聚丙烯酸酯乳液,考察了乳液质量分数、交联剂质量分数、固化温度及固化时间等因素对其固砂效果的影响。正交实验结果显示,在乳液质量分数为1.0%、交联剂质量分数为2%、固化温度为45℃和固化时间为24h时,固砂效果最佳。且该体系所得固结砂柱具有良好的耐化学腐蚀性、耐油性和耐水性。  相似文献   

6.
以柴油为分散介质、Span和Tween复配体系为乳化剂、质量分数为62.O%的丙烯酰胺水溶液为分散相,配制了反相微乳液。通过增溶水相实验、绘制拟三元相图、测定电导率,确定了反相微乳液的组成(质量分数):柴油43%,Span80/Tween80(质量比3:1)复配乳化剂17.4%,62.0%的丙烯酰胺水溶液39.6%。以产物中聚丙烯酰胺实测含量为指标,考察了引发温度、引发剂用量、搅拌速度和反应时间对聚合反应的影响,并对丙烯酰胺反相微乳液聚合的实验条件进行优化。电镜照片显示,在较优条件下制得的聚丙烯酰胺微球粒径在50illa左右,且分布单一。  相似文献   

7.
主要对以过硫酸钾为引发剂、十二烷基硫酸钠为乳化剂、二乙烯基苯为交联剂合成交联聚丙烯酸丁酯胶乳进行了研究。得出乳化剂、引发剂、交联剂用量对聚合反应及胶乳性质的影响规律,并合成出凝胶含量大于85%的交联聚丙烯酸丁酯(PBA)胶乳  相似文献   

8.
丙烯酸反相乳液聚合稳定性的研究   总被引:10,自引:1,他引:9  
用反相乳液聚合的方法,以高分子乳化剂与低分子乳化剂复配作为乳化系统,合成了稳定的高固含量的油包水型(W/O)聚丙烯酸胶乳。详细讨论了乳化剂性质及用量、丙烯酸的浓度及其共聚单体丙烯酰胺的用量、水相的pH值、油相体积分数和聚合工艺等因素对单体乳液及聚合体系稳定性的影响。  相似文献   

9.
以石油醚为油相的微乳液结构研究   总被引:1,自引:0,他引:1  
采用电导法考察了丙烯酸、丙烯酰胺、表面活性剂和氧化还原引发剂(NH4)2S2O8—NaHSO3等多种因素对十六烷基三甲基溴化铵(CTAB)或十二烷基苯磺酸钠(SDBS)/正戊醇/石油醚/水体系微乳液结构的影响,讨论了以石油醚为油相的微乳液渗滤阈值和渗滤温度的影响因素。结果表明,与SDBS微乳液相比,CTAB微乳液的渗滤阈值高,发生相转变时的水含量较高。氧化还原引发剂(NH4)2S2O8和NaHSO3的质量分数在0.25%~2%范围时,增大质量分数,微乳液体系电导率变化不大,但渗滤温度和渗滤阈值增大。加入丙烯酸和丙烯酰胺单体均会增大液滴的相互吸引作用,降低渗滤温度,但丙烯酸引起的降低程度较小,丙烯酰胺引起的降低程度较大。  相似文献   

10.
蔡英明  张兴英 《石油化工》2007,36(6):579-583
采用石油醚为连续相、失水山梨糖醇酐单油酸酯(Span80)和聚氧乙烯失水山梨醇单硬脂酸酯(Tween80)为复合乳化剂、正己醇为助乳化剂,建立了丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)反相微乳液体系。使用Zeta电位/粒度/相对分子质量分析仪对该体系的形成及聚合过程中乳胶粒子粒径及其分布进行了测试。实验结果表明,当体系达到微乳液状态时,体系主要由10~100nm的单体微珠及少量粒径小于10nm的胶束组成;随聚合过程的进行,胶束消失,乳胶粒子体积增大。乳胶粒子体积的增大主要是通过扩散和碰撞两种机理完成的。最佳的复合乳化剂亲水-亲油平衡值为8.045,复合乳化剂在油相中的质量分数为33%,助乳化剂在油相中的质量分数为1.6%。在此条件下达到微乳液状态时的水相增容体积最大。  相似文献   

11.
聚氨酯/聚丙烯酸酯混杂乳液的制备与性能研究   总被引:2,自引:1,他引:1  
陈莉  沈永丰  陈苏  王延儒 《石油化工》2004,33(8):757-762
利用核/壳型乳液聚合技术制备了聚氨酯(PU)/聚丙烯酸酯(PA)混杂乳液,并通过动态粘弹谱仪、广角X光衍射仪、激光粒度仪等分析手段对其进行研究,探讨了不同共混方式、不同组成、不同NCO与OH摩尔比对其性能、形态结构以及两相相容性的影响。结果表明,由于两种聚合物之间的协同效应使得PU/PA混杂乳液的耐水性和机械性能比其对应的物理机械共混物有显著提高。当PA质量分数小于50%时,两相相容性良好。PU/PA混杂乳液中PA含量以及NCO与OH摩尔比将影响混杂乳液的粒径。当PA质量分数小于33%时,乳液的平均粒径几乎与作为种子的PU乳液粒径相同,但进一步增加PA含量,粒径急剧增大。同时,随着NCO与OH摩尔比的增加,其乳胶粒子尺寸增大。  相似文献   

12.
核壳型高交联聚硅氧烷/丙烯酸酯复合乳液粒径分布   总被引:2,自引:2,他引:0  
以苯基三乙氧基硅烷、八甲基环四硅氧烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷为单体合成了高交联聚硅氧烷乳液,然后与丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)接枝共聚,得到具有核壳结构的高交联聚硅氧烷/BA/MMA 复合乳液。考察了乳化剂的种类与用量、单体加料方式、单体总浓度对乳胶粒粒径分布的影响。实验结果表明,采用辛基苯酚聚氰乙烯醚/十二烷基苯磺酸复合乳化剂合成聚硅氧烷乳液,BA 和 MMA 加入前补加十二烷基苯磺酸钠乳化剂且两单体以半连续法加入,可得到较均匀的复合乳液。当复合乳化剂用量为硅烷单体质量的10%、十二烷基苯磺酸钠补加量为 BA 和 MMA 总质量的1.5%、单体总量为体系中水质量的35%时,乳胶粒的体积平均直径约为71 nm。  相似文献   

13.
以丁二烯和苯乙烯为原料,乳化剂十二烷基硫酸钠和十二烷基苯磺酸钠(二者质量比为2.0/1.0)混合物为负离子乳化体系,过氧化二异丙苯与硫酸亚铁(二者质量比为7/1)混合物为引发体系,叔十二碳硫醇为相对分子质量调节剂,采用三段控温模式,制备出沥青改性用丁苯胶乳,研究了配方和工艺条件对胶乳中凝胶质量分数的影响.结果表明,当丁二烯/苯乙烯质量比为( 70 ~ 75)/(25 ~30),乳化体系用量为6.0份(质量,下同),引发体系用量为0.2~0.4份时,采用分批加入0.37~0.46份相对分子质量调节剂,可制备凝胶质量分数为10% ~ 20%的沥青改性用丁苯胶乳.  相似文献   

14.
超微胶乳的合成研究综述   总被引:1,自引:0,他引:1  
在概述乳液聚合及微乳液聚合特点的基础上,介绍了胶乳剪切分散法和微乳液聚合法制备超微胶乳,重点讨论了反应温度、乳化剂和引发剂对微乳液聚合法制备超微胶乳的影响。指出了目前超微胶乳研究中亟待解决的问题。  相似文献   

15.
在十二烷基硫酸钠、十二烷基联苯醚二磺酸钠及辛基苯酚聚氧乙烯醚所组成的阴离子/非离子复合乳化剂存在下,用批量聚合法和半连续聚合法制备了苯乙烯(S t)-对乙烯基苯磺酸钠(NaSS)二元乳液共聚物,用动态激光光散射法研究了乳胶粒的粒径与聚合工艺及NaSS加入量的关系。依次以甲醇和水为溶剂,利用索氏提取器对共聚物试样进行纯化,并利用傅里叶变换红外光谱和元素分析法对提纯后的共聚物试样进行结构及组成分析。实验结果表明,当NaSS的摩尔分数为5%~20%时,乳胶粒的粒径随NaSS加入量的增加而增大。随NaSS加入量的增加,批量聚合法共聚物中NaSS单元的含量变化较小,半连续法共聚物中NaSS单元的含量则增加。  相似文献   

16.
针对辽河油田某特定区块油藏特征和油品性质,对阴离子型表面活性剂重烷基苯磺酸盐、非离子型表面活性剂聚氧乙烯壬基醚、碱Na2CO3及疏水型聚合物进行复配,对复配体系与原油间界面活性和溶液增粘能力进行实验研究,应用正交实验法进行实验方案设计,通过直接比较和计算分析等方法得出最佳配方:阴离子表面活性剂质量分数0.1%-0.125%,非离子表面活性剂0.15%,Na2CO31.6%-1.8%,疏水型聚合物0.12%。该驱油体系具有较高的界面活性,长期热稳定性较好,而且解决了阴离子表面活性剂的盐析现象和非离子表面活性剂吸附损失大、需要的碱含量高、溶解性能差等问题,同时拓宽了表面活性剂、碱剂在复合驱油体系中的使用含量范围,筛选出的复配型驱油体系适应性更好。  相似文献   

17.
单体及乳化剂组成对核壳型丙烯酸酯乳液性能的影响   总被引:1,自引:0,他引:1  
实验以甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为单体,十二烷基硫酸钠(SDS)和壬基酚聚氧乙烯醚(OP-10)为复合乳化剂,经预乳化半连续种子乳液聚合发合成核壳型丙烯酸酯乳液。讨论了核壳层乳化剂质量比、核壳层硬软单体质量比、核壳层单体总质量比对聚合反应以及乳胶膜性能的影响,结果表明:当复合乳化剂SDS和OP-10的总用量为3%[m(SDS):m(OP-10)=2:1],且在核壳层中的质量比为4:1,核层、壳层中MMA与BA的质量比分别为1:2和3:1,核壳层单体总质量比为1:1时,可制成综合性能良好的核壳型丙烯酸酯乳液。  相似文献   

18.
实验以丙烯酸丁酯、丙烯酸、苯乙烯、可聚合型乳化剂等为原料,以种子微乳液聚合法制备了核壳型苯丙微乳液。利用有机概念图选择微乳液聚合用乳化剂,选用高效乳化剂MS-1(壬基酚聚氧乙烯醚-2-磺酸基琥珀酸单酯二钠盐)和聚合型乳化剂复配,在复配比为6:2,用量为体系的2.4%时,合成粒径为47.24 nm、吸水率8.09%的苯丙微乳液。探讨不同乳化剂配比对乳液性能和涂膜性能的影响,实验结果表明,当复合乳化剂(α角分别为72.98°和72.63°)与聚合体系(α角为72.91°)的α角(I/O值)相匹配时,得到性能较好的苯丙微乳液。  相似文献   

19.
反相乳液聚合法制备驱油用高分子表面活性剂   总被引:1,自引:1,他引:0  
采用反相乳液聚合法,以(NH4)2S2O8-NaHSO3为氧化-还原引发剂,Span80/OP-10为复合乳化剂,十二胺为助乳化剂,将一种阴离子型表面活性单体MS(一种分子中具有耐水解的N-烷基丙烯酰胺结构的磺酸盐型单体)、N,N-二异辛烷基丙烯酰胺疏水单体(DiC8AM)与丙烯酰胺(AM)共聚制得AM-MS-DiC8AM(简称PMD)共聚物。实验结果表明,制备PMD共聚物的较佳条件为:反应温度40℃;反应时间5h;n((NH4)2S2O8)∶n(NaHSO3)=1∶1,w(引发剂)=0.10%(基于总单体);控制Span80/OP-10复合乳化剂的亲水亲油值在5~6之间;AM,MS,DiC8AM的用量(基于聚合体系的质量)分别为23.6%,6.0%,0.4%。在较佳条件下制备的PMD共聚物水溶液具有较高的表面活性、表观黏度和抗盐能力(黏度保留率为62.2%)。  相似文献   

20.
复合驱体系化学剂静态损失评价方法研究   总被引:1,自引:0,他引:1  
化学剂的损失程度直接影响化学段塞的使用效率。仅考察经油砂吸附后的化学剂损失,不能全面反映驱替过程中的化学剂静态损失程度。为此系统考察了三元复合驱体系经油砂和油相吸附后,表面活性剂质量分数和组成、NaOH质量分数及三元体系与原油间界面张力的变化。三元复合驱组成为:HPAM1.5g/L,表面活性剂上限质量分数0.3%,NaOH上限质量分数1.2%。实验结果表明,经油砂7次吸附后,表面活性剂质量分数从0.28%降至0.02%;NaOH质量分数从1.10%降至0.71%;三元体系经油砂5次吸附后,与原油间的界面张力已无法降至10-3mN/m数量级。经油砂吸附后的三元体系与油相作用后,表面活性剂质量分数降低,最大降幅达50%,表面活性剂分子量明显升高;而NaOH质量分数降幅较小,最大降幅仅为15.22%;经油砂3次吸附后的三元体系与油相作用后,与原油间的界面张力已无法降至10-3mN/m数量级。建议将油砂吸附与油相充分作用相结合,综合评价驱替液的化学剂静态损失程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号