首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In typical applications of homomorphic encryption, the first step consists for Alice of encrypting some plaintext m under Bob’s public key \(\mathsf {pk}\) and of sending the ciphertext \(c = \mathsf {HE}_{\mathsf {pk}}(m)\) to some third-party evaluator Charlie. This paper specifically considers that first step, i.e., the problem of transmitting c as efficiently as possible from Alice to Charlie. As others suggested before, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \(\mathsf {E}\), Alice picks a random key k and sends a much smaller ciphertext \(c' = (\mathsf {HE}_{\mathsf {pk}}(k), \mathsf {E}_k(m))\) that Charlie decompresses homomorphically into the original c using a decryption circuit \(\mathcal {C}_{{\mathsf {E}^{-1}}}\). In this paper, we revisit that paradigm in light of its concrete implementation constraints, in particular \(\mathsf {E}\) is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium has excellent performance. We also describe a second construction, based on exponentiation in binary fields, which is impractical but sets the lowest depth record to \(8\) for \(128\)-bit security.  相似文献   

2.
3.
Göös et al. (ITCS, 2015) have recently introduced the notion of Zero-Information Arthur–Merlin Protocols (\(\mathsf {ZAM}\)). In this model, which can be viewed as a private version of the standard Arthur–Merlin communication complexity game, Alice and Bob are holding a pair of inputs x and y, respectively, and Merlin, the prover, attempts to convince them that some public function f evaluates to 1 on (xy). In addition to standard completeness and soundness, Göös et al., require a “zero-knowledge” property which asserts that on each yes-input, the distribution of Merlin’s proof leaks no information about the inputs (xy) to an external observer. In this paper, we relate this new notion to the well-studied model of Private Simultaneous Messages (\(\mathsf {PSM}\)) that was originally suggested by Feige et al. (STOC, 1994). Roughly speaking, we show that the randomness complexity of \(\mathsf {ZAM}\) corresponds to the communication complexity of \(\mathsf {PSM}\) and that the communication complexity of \(\mathsf {ZAM}\) corresponds to the randomness complexity of \(\mathsf {PSM}\). This relation works in both directions where different variants of \(\mathsf {PSM}\) are being used. As a secondary contribution, we reveal new connections between different variants of \(\mathsf {PSM} \) protocols which we believe to be of independent interest. Our results give rise to better \(\mathsf {ZAM}\) protocols based on existing \(\mathsf {PSM}\) protocols, and to better protocols for conditional disclosure of secrets (a variant of \(\mathsf {PSM}\)) from existing \(\mathsf {ZAM} \)s.  相似文献   

4.
Differential thermal analysis (DTA) has been conducted on directionally solidified near-eutectic Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC), SAC \(+\) 0.2 wt.%Sb, SAC \(+\) 0.2 wt.%Mn, and SAC \(+\) 0.2 wt.%Zn. Laser ablation inductively coupled plasma mass spectroscopy was used to study element partitioning behavior and estimate DTA sample compositions. Mn and Zn additives reduced the undercooling of SAC from 20.4\(^\circ \hbox {C}\) to \(4.9^\circ \hbox {C}\) and \(2^\circ \hbox {C}\), respectively. Measurements were performed at cooling rate of \(10^\circ \hbox {C}\) per minute. After introducing 200 ppm \(\hbox {O}_2\) into the DTA, this undercooling reduction ceased for SAC \(+\) Mn but persisted for SAC \(+\) Zn.  相似文献   

5.
In this paper, we study the security of a general two-level E0-like encryption model and its instance, the real-world Bluetooth encryption scheme. Both unconditional and conditional correlation properties of the two-level model are investigated in theory and a key-recovery framework based on condition masking, that studies how to choose the condition to get better tradeoffs on the time/memory/data complexity curve, is refined. A novel design criterion to resist the attack is proposed and analyzed. Inspired by these cryptanalytic principles, we describe more threatening and real time attacks on two-level E0. It is shown that only the latest four inputs going into the FSM play the most important role in determining the magnitude of the conditional correlation and the data complexity analysis of the previous practical attacks on two-level E0 are inaccuracy. A new decoding method to improve the data complexity is provided. In the known-IV scenario, if the first 24 bits of \(2^{24}\) frames are available, the secret key can be reliably found with \(2^{25}\) on-line computations, \(2^{21.1}\) off-line computations and 4 MB memory. Then, we convert the attack into a ciphertext-only attack, which needs the first 24 bits of \(2^{26}\) frames and all the complexities are under \(2^{26}\). This is the first practical ciphertext-only attack on the real Bluetooth encryption scheme so far. A countermeasure is suggested to strengthen the security of Bluetooth encryption in practical applications.  相似文献   

6.
We give a detailed account of the use of \(\mathbb {Q}\)-curve reductions to construct elliptic curves over \(\mathbb {F}_{p^2}\) with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves and thus finding secure group orders when \(p\) is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over \(\mathbb {F}_{p^2}\) equipped with efficient endomorphisms for every \(p > 3\), and exhibit examples of twist-secure curves over \(\mathbb {F}_{p^2}\) for the efficient Mersenne prime \(p = 2^{127}-1\).  相似文献   

7.
A fractor is a simple fractional-order system. Its transfer function is \(1/Fs^{\alpha }\); the coefficient, F, is called the fractance, and \(\alpha \) is called the exponent of the fractor. This paper presents how a fractor can be realized, using RC ladder circuit, meeting the predefined specifications on both F and \(\alpha \). Besides, commonly reported fractors have \(\alpha \) between 0 and 1. So, their constant phase angles (CPA) are always restricted between \(0^{\circ }\) and \(-90^{\circ }\). This work has employed GIC topology to realize fractors from any of the four quadrants, which means fractors with \(\alpha \) between \(-\)2 and +2. Hence, one can achieve any desired CPA between \(+180^{\circ }\) and \(-180^{\circ }\). The paper also exhibits how these GIC parameters can be used to tune the fractance of emulated fractors in real time, thus realizing dynamic fractors. In this work, a number of fractors are developed as per proposed technique, their impedance characteristics are studied, and fractance values are tuned experimentally.  相似文献   

8.
In this work, we present a self cascode based ultra-wide band (UWB) low noise amplifier (LNA) with improved bandwidth and gain for 3.1–10.6 GHz wireless applications. The self cascode (SC) or split-length compensation technique is employed to improve the bandwidth and gain of the proposed LNA. The improvement in the bandwidth of SC based structure is around 1.22 GHz as compared to simple one. The significant enhancement in the characteristics of the introduced circuit is found without extra passive components. The SC based CS–CG structure in the proposed LNA uses the same DC current for operating first stage transistors. In the designed UWB LNA, a common source (CS) stage is used in the second stage to enhance the overall gain in the high frequency regime. With a standard 90 nm CMOS technology, the presented UWB LNA results in a gain \(\hbox {S}_{21}\) of \(20.10 \pm 1.65\,\hbox {dB}\) across the 3.1–10.6 GHz frequency range, and dissipating 11.52 mW power from a 1 V supply voltage. However, input reflection, \(\hbox {S}_{11}\), lies below \(-\,10\) dB from 4.9–9.1 GHz frequency. Moreover, the output reflection (\(\hbox {S}_{22}\)) and reverse isolation (\(\hbox {S}_{12}\)), is below \(-\,10\) and \(-\,48\) dB, respectively for the ultra-wide band region. Apart from this, the minimum noise figure (\(\hbox {NF}_{min}\)) value of the proposed UWB LNA exists in the range of 2.1–3 dB for 3.1–10.6 GHz frequency range with a a small variation of \(\pm \,0.45\,\hbox {dB}\) in its \(\hbox {NF}_{min}\) characteristics. Linearity of the designed LNA is analysed in terms of third order input intercept point (IIP3) whose value is \(-\,4.22\) dBm, when a two tone signal is applied at 6 GHz with a spacing of 10 MHz. The other important benefits of the proposed circuit are its group-delay variation and gain variation of \(\pm \,115\,\hbox {ps}\) and \(\pm \,1.65\,\hbox {dB}\), respectively.  相似文献   

9.
This paper presents a capacitor-free low dropout (LDO) linear regulator based on a dual loop topology. The regulator utilizes two feedback loops to satisfy the challenges of hearing aid devices, which include fast transient performance and small voltage spikes under rapid load-current changes. The proposed design works without the need of a decoupling capacitor connected at the output and operates with a 0–100 pF capacitive load. The design has been taped out in a \(0.18\,\upmu \hbox {m}\) CMOS process. The proposed regulator has a low component count, area of \(0.012\, \hbox {mm}^2\) and is suitable for system-on-chip integration. It regulates the output voltage at 0.9 V from a 1.0–1.4 V supply. The measured results for a current step load from 250 to 500 \(\upmu \hbox {A}\) with a rise and fall time of \(1.5\,\upmu \hbox {s}\) are an overshoot of 26 mV and undershoot of 26 mV with a settling time of \(3.5\,\upmu \hbox {s}\) when \({C_L}\) between 0 and 100 pF. The proposed LDO regulator consumes a quiescent current of only \(10.5\,\upmu \hbox {A}\). The design is suitable for application with a current step edge time of 1 ns while maintaining \(\Delta V_{out}\) of 64 mV.  相似文献   

10.
Light-trail, a framework proposed in the past few years, is generalized from the concept of lightpath, and its distinguishing features include bandwidth sharing and efficient bandwidth utilization. Performance of light-trail networks depends on the routing algorithm and the dynamic bandwidth allocation (DBA) scheme, and the former issue has been discussed extensively. In this work, we aim at the design of an efficient DBA scheme, named Demand and Delay-latency Aware with Two-round Deliberation \((\hbox {D}^{2}\hbox {ATD})\), to allocate bandwidth more accurately and efficiently in light-trail networks. In addition to DBA issue, \(\hbox {D}^{2}\hbox {ATD}\) includes a light-trail setup/release mechanism as well. As expected, the simulation results reveal superiority of \(\hbox {D}^{2}\hbox {ATD}\) in both blocking performance and delay performance. Although \(\hbox {D}^{2}\hbox {ATD}\) pays a price of control overhead for performance gain, it is still reasonable since the amount of control messages does not exceed the capacity of the control channel. It verifies that \(\hbox {D}^{2}\hbox {ATD}\) can properly employ the control channel to achieve excellent performance.  相似文献   

11.
In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at \(P_b=10^{-9}\) PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size \(M=16\) and extinction ratio \(r=30\) dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve \(P_b=10^{-9}\). This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle \(\theta \) than PQ-mPPM. For instance, for \(M=16\), \(r=30\) dB, and \(\theta =10^{\circ }\) PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve \(P_b=10^{-9}\). However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for \(M=2\) its bandwidth efficiency is 60 % that of PQ-mPPM and \(\approx 86\,\%\) for \(M=1024\). For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.  相似文献   

12.
MISTY1 is a block cipher designed by Matsui in 1997. It was well evaluated and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In this paper, we propose a key recovery attack on the full MISTY1, i.e., we show that 8-round MISTY1 with 5 FL layers does not have 128-bit security. Many attacks against MISTY1 have been proposed, but there is no attack against the full MISTY1. Therefore, our attack is the first cryptanalysis against the full MISTY1. We construct a new integral characteristic by using the propagation characteristic of the division property, which was proposed in EUROCRYPT 2015. We first improve the division property by optimizing the division property for a public S-box and then construct a 6-round integral characteristic on MISTY1. Finally, we recover the secret key of the full MISTY1 with \(2^{63.58}\) chosen plaintexts and \(2^{121}\) time complexity. Moreover, if we use \(2^{63.994}\) chosen plaintexts, the time complexity for our attack is reduced to \(2^{108.3}\). Note that our cryptanalysis is a theoretical attack. Therefore, the practical use of MISTY1 will not be affected by our attack.  相似文献   

13.
This paper presents a new time-mode duty-cycle-modulation-based high-accuracy temperature sensor. Different from the well-known \({\varSigma }{\varDelta }\) ADC-based readout structure, this temperature sensor utilizes a temperature-dependent oscillator to convert the temperature information into temperature-related time-mode parameter values. The useful output information of the oscillator is the duty cycle, not the absolute frequency. In this way, this time-mode duty-cycle-modulation-based temperature sensor has superior performance over the conventional inverter-chain-based time domain types. With a linear formula, the duty-cycle output streams can be converted into temperature values. The design is verified in 65nm standard digital CMOS process. The verification results show that the worst temperature inaccuracy is kept within 1\(\,^{\circ }\mathrm{C}\) with a one-point calibration from \(-\)55 to 125 \(^{\circ }\mathrm{C}\). At room temperature, the average current consumption is only 0.8 \(\upmu \)A (1.1\(\,\upmu \)A in one phase and 0.5 \(\upmu \)A in the other) with 1.2 V supply voltage, and the total energy consumption for a complete measurement is only 0.384 \({\hbox {nJ}}\).  相似文献   

14.
In this paper, we first present an enhancement of the well-known Karatsuba 2-way and 3-way algorithms for characteristic three fields, denoted by \(\mathbb {F}_{3^{n}}\) where n≥1. We then derive a 3-way polynomial multiplication algorithm with five 1/3 sized multiplications that use interpolation in \(\mathbb {F}_{9}\). Following the computation of the arithmetic and delay complexity of the proposed algorithm, we provide the results of our hardware implementation of polynomial multiplications over \(\mathbb {F}_{3}\) and \(\mathbb {F}_{9}\). The final proposal is a new 3-way polynomial multiplication algorithm over \(\mathbb {F}_{3}\) that uses three polynomial multiplications of 1/3 of the original size over \(\mathbb {F}_{3}\) and one polynomial multiplication of 1/3 of the original size over \(\mathbb {F}_{9}\). We show that this algorithm represents about 15% reduction of the complexity over previous algorithms for the polynomial multiplications whose sizes are of practical interest.  相似文献   

15.
In this paper, we investigate the application of Kerr-like nonlinear photonic crystal (PhC) ring resonator (PCRR) for realizing a tunable full-optical add–drop filter. We used silicon (Si) nano-crystal as the nonlinear material in pillar-based square lattice of a 2DPhC. The nonlinear section of PCRR is studied under three different scenarios: (1) first only the inner rods of PCRR are made of nonlinear materials, (2) only outer rods of PCRR have nonlinear response, and (3) both of inner and outer rods are made of nonlinear material. The simulation results indicate that optical power required to switch the state of PCRR from turn-on to turn-off, for the nonlinearity applied to inner PCRR, is at least \(2000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) and, for the nonlinearity applied to outer PCRR, is at least \(3000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) which corresponds to refractive index change of \(\Delta n_\mathrm{NL }= 0.085\) and \(\Delta n_\mathrm{NL }= 0.15\), respectively. For nonlinear tuning of add–drop filter, the minimum power required to 1 nm redshift the center operating wavelength \((\lambda _{0} = 1550\, \hbox {nm})\) for the inner PCRR scenario is \(125\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) (refractive index change of \(\Delta n_\mathrm{NL}= 0.005)\). Maximum allowed refractive index change for inner and outer scenarios before switch goes to saturation is \(\Delta n_\mathrm{NL }= 0.04\) (maximum tune-ability 8 nm) and \(\Delta n_\mathrm{NL }= 0.012\) (maximum tune-ability of 24 nm), respectively. Performance of add–drop filter is replicated by means of finite-difference time-domain method, and simulations displayed an ultra-compact size device with ultra-fast tune-ability speed.  相似文献   

16.
In this work, two-channel perfect reconstruction quadrature mirror filter (QMF) bank has been proposed based on the prototype filter using windowing method. A novel window function based on logarithmic function along with the spline function is utilized for the design of prototype filter. The proposed window has a variable parameter ‘\(\alpha \)’, which varies the peak side lobe level and rate of fall-off side lobe level which in turn affects the peak reconstruction error (PRE) and amplitude distortion (\(e_{am}\)) of the QMF bank . The transition width of the prototype is controlled by the spline function using the parameter ‘\(\mu \)’. The perfect reconstruction condition is satisfied by setting the cutoff frequency (\(\omega _{c}\)) of the prototype low-pass filter at ‘\(\pi /2\)’. The performance of the proposed design method has been evaluated in terms of mean square error in the pass band, mean square error in the stop band, first side lobe attenuation (\(A_{1}\)), peak reconstruction error (PRE) and amplitude error (\(e_{am}\)) for different values of ‘\(\alpha \)’ and ‘\(\mu \)’. The results are provided and compared with the existing methods.  相似文献   

17.
Recently, the design of group sparse regularization has drawn much attention in group sparse signal recovery problem. Two of the most popular group sparsity-inducing regularization models are \(\ell _{1,2}\) and \(\ell _{1,\infty }\) regularization. Nevertheless, they do not promote the intra-group sparsity. For example, Huang and Zhang (Ann Stat 38:1978–2004, 2010) claimed that the \(\ell _{1,2}\) regularization is superior to the \(\ell _1\) regularization only for strongly group sparse signals. This means the sparsity of intra-group is useless for \(\ell _{1,2}\) regularization. Our experiments show that recovering signals with intra-group sparse needs more measurements than those without, by the \(\ell _{1,\infty }\) regularization. In this paper, we propose a novel group sparsity-inducing regularization defined as a mixture of the \(\ell _{1/2}\) norm and the \(\ell _{1}\) norm, referred to as \(\ell _{1/2,1}\) regularization, which can overcome these shortcomings of \(\ell _{1,2}\) and \(\ell _{1,\infty }\) regularization. We define a new null space property for \(\ell _{1/2,1}\) regularization and apply it to establish a recoverability theory for both intra-group and inter-group sparse signals. In addition, we introduce an iteratively reweighted algorithm to solve this model and analyze its convergence. Comprehensive experiments on simulated data show that the proposed \(\ell _{1/2,1}\) regularization is superior to \(\ell _{1,2}\) and \(\ell _{1,\infty }\) regularization.  相似文献   

18.
In this paper a novel high-frequency fully differential pure current mode current operational amplifier (COA) is proposed that is, to the authors’ knowledge, the first pure MOSFET Current Mode Logic (MCML) COA in the world, so far. Doing fully current mode signal processing and avoiding high impedance nodes in the signal path grant the proposed COA such outstanding properties as high current gain, broad bandwidth, and low voltage and low-power consumption. The principle operation of the block is discussed and its outstanding properties are verified by HSPICE simulations using TSMC \(0.18\,\upmu \hbox {m}\) CMOS technology parameters. Pre-layout and Post-layout both plus Monte Carlo simulations are performed under supply voltages of \(\pm 0.75\,\hbox {V}\) to investigate its robust performance at the presence of fabrication non-idealities. The pre-layout plus Monte Carlo results are as; 93 dB current gain, \(8.2\,\hbox {MHz}\,\, f_{-3\,\text {dB}}, 89^{\circ }\) phase margin, 137 dB CMRR, 13 \(\Omega \) input impedance, \(89\,\hbox {M}\Omega \) output impedance and 1.37 mW consumed power. Also post-layout plus Monte Carlo simulation results (that are generally believed to be as reliable and practical as are measuring ones) are extracted that favorably show(in abovementioned order of pre-layout) 88 dB current gain, \(6.9\,\hbox {MHz} f_{-3\text {db}} , 131^{\circ }\) phase margin and 96 dB CMRR, \(22\,\Omega \) input impedance, \(33\,\hbox {M}\Omega \) output impedance and only 1.43 mW consumed power. These results altogether prove both excellent quality and well resistance of the proposed COA against technology and fabrication non-idealities.  相似文献   

19.
It is very challenging task to achieve good Quality of Services (QoS) in highly dynamic topology of Vehicular Ad hoc NETwork (VANET). The Average Connected Coverage (ACC) is very important QoS of VANET to spread emergency information. This paper proposes Connected_Cover algorithm to analyze ACC of VANET using Genetic Algorithm Multi Objective optimization (gamultiobj) tool. Gamultiobj tool generates Pareto front in MATLAB. Using Pareto fronts this paper select transmission range \(TR_{sel}\) and Vehicle density \(Vd_{sel}\) having ACC \(\ge\) 95%. This \(Vd_{sel}\) must have ACC \(\ge\) 98% when transmission range is 1000 m. Further, the \(TR_{sel}\) and \(Vd_{sel}\) is used in proposed Adaptive Transmission Power (ATP) scheme to improve QoS of VANET. Adaptive transmission power scheme for transmission range 400 and 250 m enhanced the Packet Delivery Fraction (PDF), increased the throughput, decreased the per hop End-to-End Transmission Delay (EETxD) and reduced the retransmissions as compared to Fixed Transmission Power schemes for VANETs safety and warning applications. This paper achieved the PDF and throughput with 250 m ATP scheme higher than 400 m Fixed Power (FP) scheme; also PDF and throughput with 400 m ATP scheme similar to 1000 m FP and ATP scheme for lesser number of nodes (10–50 nodes). The scope of this paper also discusses the number of Road Side Unit (RSU) required in VANET to reduce the cost of system on the basis of ACC. Performance of the system is analyzed using NS-2.35 simulator.  相似文献   

20.
Direct data domain (DDD) space-time adaptive processing methods avoid nonhomogenerous training samples and can effectively suppress the clutter within the test range cell. However, it suffers inevitable performance loss due to the spatial and temporal smoothing process. Furthermore, the clutter suppression ability of these methods sharply degrades when applied to non-uniform and non-linear array for airborne radar. In this paper, a novel clutter suppression approach in the direct data domain is proposed, which describes clutter characteristic of the test range cell with AR model. For convenience, the novel method is referred to as \(\hbox {D}^{3}\hbox {AR}\). It utilizes the most system DOF. Hence, it suffers less aperture loss, compared to conventional DDD methods, e.g., the direct data domain least squares (\(\hbox {D}^{3}\hbox {LS}\)). More importantly, \(\hbox {D}^{3}\hbox {AR}\) can achieve much better clutter suupression prformance than \(\hbox {D}^{3}\hbox {LS}\) when applied to conformal array airborne radar because it does not need the spatial smoothing. The effectiveness of the \(\hbox {D}^{3}\hbox {AR}\) is verified by numerical examples for the case of a circular array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号