首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing countries like Pakistan need continuous supply of cheap energy. It is common fear in today’s world that fossil fuels will be depleted soon. The cost of energy is increasing continuously and is expected to be at its peak by 2050. Many technologically advanced countries are successfully using renewable energy sources for their energy needs, however, they still believe in the importance of fossil fuel. In renewable energy field, Pakistan is using hydropower for energy needs successfully, whereas project regarding solar and wind energy is in progress. Biomass, a renewable energy source, is gaining interest in many researchers because it produces similar type of fuel extracted from crude oil. Energy from biomasses only depends upon the availability of cheap raw material.Biodiesel, which is produced by the reaction of vegetable oil and alcohol, can be used with same or with better performance in diesel engine. It is a clean fuel that causes less environment pollution as compared to petro diesel. High cost and non-continuous supply of vegetable oil is the main hurdle for its general acceptance. Many advanced countries have developed strategy for continuous supply of cheap price energy crops (source of biomass). Biodiesel is the only possible reciprocal to petro diesel or otherwise diesel engine will be useless after the depletion of crude oil.In this study, biodiesel as an energy source has been discussed; this is indigenous diesel engine fuel and is beneficial for our environment, economy, and more importantly will increase the income of our farmers.  相似文献   

2.
As the global demand for energy rapidly increases and fossil fuels will be soon exhausted, bio‐energy has become one of the key options for shorter and medium term substitution for fossil fuels and the mitigation of greenhouse gas emissions. Biomass currently supplies 14% of the world's energy needs. Biomass pyrolysis has a long history and substantial future potential—driven by increased interest in renewable energy. This article presents the state‐of‐the‐art of biomass pyrolysis systems, which have been—or are expected to be—commercialized. Performance levels, technological status, market penetration of new technologies and the costs of modern forms of biomass energy are discussed. Advanced methods have been developed in the last two decades for the direct thermal conversion of biomass to liquid fuels, charcoals and various chemicals in higher yields than those obtained by traditional pyrolysis processes. The most important reactor configurations are fluidized beds, rotating cones, vacuum and ablative pyrolysis reactors. Fluidized beds and rotating cones are easier for scaling and possibly more cost effective. Slow pyrolysis is being used for the production of charcoal, which can also be gasified to obtain hydrogen‐rich gas. The short residence time pyrolysis of biomass (flash pyrolysis), at moderate temperatures, is being used to obtain a high yield of liquid products (up to 70% wt), particularly interesting as energetic vectors. Bio‐oil can substitute for fuel oil—or diesel fuel—in many static applications including boilers, furnaces, engines and turbines for electricity generation. While commercial biocrudes can easily substitute for heavy fuel oils, it is necessary to improve the quality in order to consider biocrudes as a replacement for light fuel oils. For transportation fuels, high severity chemical/catalytic processes are needed. An attractive future transportation fuel can be hydrogen, produced by steam reforming of the whole oil, or its carbohydrate‐derived fraction. Pyrolysis gas—containing significant amount of carbon dioxide, along with methane—might be used as a fuel for industrial combustion. Presently, heat applications are most economically competitive, followed by combined heat and power applications; electric applications are generally not competitive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The demand for energy is increasing every year. For a long time, fossil fuels have been used to satiate this energy demand. However, using hydrocarbon-based fossil fuels has led to an enormous rise of carbon dioxide levels in the atmosphere resulting in global warming. It is therefore necessary to look for alternatives to fossil fuels. The research carried out till date have shown biomass and waste-derived fuels as plausible alternatives to fossil fuels. The biomass feedstock includes jatropha oil, Karanja oil, cottonseed oil, and hemp oil among others and wastes include used cooking oil, used engine oil, used tire and used plastics etc. In this study, the authors aim to explore waste lubrication oil as a fuel for the diesel engine. The used lubrication oil was pyrolyzed and diesel-like fuel with 80% conversion efficiency was obtained. A blend of the fuel and diesel in the ratio of 80:20 on volume basis was prepared. Engine experiments at various load conditions was carried out with the blend. As compared to diesel, a 2% increase in thermal efficiency, 6.3%, 16.1% and 13.6% decrease in smoke, CO and HC emissions & 3.2% and 1.8% increase in NOx and CO2 emission were observed at full load with the blend. With an aim to further improve the engine performance and reduce the overall emissions from the engine exhaust, a zero-carbon fuel namely gaseous hydrogen was inducted in the intake manifold. The flow rate of hydrogen was varied from 3 to 12 Litres per minute (LPM). As compared to diesel, at maximum hydrogen flow rate the thermal efficiency increased by 12.2%. HC, CO and smoke emissions decreased by 42.4%, 51.6% and 16.8%, whereas NOx emissions increased by 22%. The study shows that the combination of pyrolyzed waste lubricant and hydrogen were found to be suitable as a fuel for an unmodified diesel engine. Such fuel combination can be used for stationary applications such as power backups.  相似文献   

4.
The IPFC is a high efficiency energy cycle, which converts fossil and biomass fuel to electricity and co-product hydrogen and liquid transportation fuels (gasoline and diesel). The cycle consists of two basic units, a hydrogen plasma black reactor (HPBR) which converts the carbonaceous fuel feedstock to elemental carbon and hydrogen and CO gas. The carbon is used as fuel in a direct carbon fuel cell (DCFC), which generates electricity, a small part of which is used to power the plasma reactor. The gases are cleaned and water gas shifted for either hydrogen or syngas formation. The hydrogen is separated for production or the syngas is catalytically converted in a Fischer–Tropsch (F–T) reactor to gasoline and/or diesel fuel. Based on the demonstrated efficiencies of each of the component reactors, the overall IPFC thermal efficiency for electricity and hydrogen or transportation fuel is estimated to vary from 70 to 90% depending on the feedstock and the co-product gas or liquid fuel produced. The CO2 emissions are proportionately reduced and are in concentrated streams directly ready for sequestration. Preliminary cost estimates indicate that IPFC is highly competitive with respect to conventional integrated combined cycle plants (NGCC and IGCC) for production of electricity and hydrogen and transportation fuels.  相似文献   

5.
Fast depletion of fossil fuels is demanding an urgent need to carry out research work to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. The technology for producing hydrogen from a variety of resources, including renewable, is evolving and that will make hydrogen energy system as cost-effective. Hydrogen safety concerns are not the cause for fear but they simply are different than those we are accustomed to with gasoline, diesel and other fossil fuels. For the time being full substitution of diesel with hydrogen is not convenient but use of hydrogen in a diesel engine in dual fuel mode is possible. So Hydrogen has been proposed as the perfect fuel for this future energy system. The experiment is conducted using diesel–hydrogen blend. A timed manifold induction system which is electronically controlled has been developed to deliver hydrogen on to the intake manifold. The solenoid valve is activated by the new technique of taking signal from the rocker arm of the engine instead of cam actuation mechanism. In the present investigation hydrogen-enriched air has been used in a diesel engine with hydrogen flow rate at 0.15 kg/h. As diesel is substituted and hydrogen is inducted, the NOx emission is increased. In order to reduce NOx emission an EGR system has been developed. In the EGR system a lightweight EGR cooler has been used instead of bulky heat exchanger. In this experiment performance parameters such as brake thermal efficiency, volumetric efficiency, BSEC are determined and emissions such as oxides of nitrogen, carbon dioxide, carbon monoxide, hydrocarbon, smoke and exhaust gas temperature are measured. Dual fuel operation with hydrogen induction coupled with exhaust gas recirculation results in lowered emission level and improved performance level compared to the case of neat diesel operation.  相似文献   

6.
Synthetic fuel production from renewable energy, water, and anthropogenic carbon resources offers a promising alternative to fossil fuels by reducing the consumption of nonrenewable resources and greenhouse gas emissions. This article presents a case study of a solar‐based methanol plant that derives hydrogen and carbon dioxide material inputs from seawater on an offshore artificial island. Photovoltaic cells generate electricity for an electrolytic cation exchange membrane (E‐CEM) reactor that simultaneously produces hydrogen and carbon dioxide, with freshwater for electrolysis via seawater reverse osmosis. Carbon dioxide hydrogenation in a low‐pressure isothermal cascade‐type reactor system produces methanol as a liquid fuel product. Thermodynamic assessment of the integrated system indicates solar‐to‐methanol energy and exergy conversion efficiencies of 1.5% and 1.3%, respectively, with the most significant losses occurring in the offshore concentrator photovoltaic (CPV) and E‐CEM reactor unit.  相似文献   

7.
Energy conversion alone is inadequate to satisfy long-term energy demands and to gain independence from petroleum-based fuels. It is, therefore, of great importance that all potential fuel alternatives be recognised and examined. Natural gas and bio-liquids may provide such alternatives and their potential has been examined (Nwafor and Rice, WREC 1994;2:841). Fossil fuel combustion is the main culprit in environmental pollution, whilst the impacts of vegetable oil fuel systems are on the whole less adverse and more localised than those of fossil fuels. This paper investigates the possibility of substituting a plant fuel pilot injection for diesel fuel for combustion of natural gas in a diesel engine. The pilot fuels used are rape methyl ester (RME) and neat rapeseed oil. The test results indicate that engine performance on these alternative pilot fuels was satisfactory and compared favourably with the baseline test result on diesel fuel.  相似文献   

8.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

9.
ABSTRACT

For fetching day-to-day energy needs, current energy requirement majorly depends on fossil fuels. But ambiguous matter like abating petroleum products and expanding air pollution has enforced the experts to strive for another fuel which can be used as an alternative or reduce the applications of fossil fuels. Considering the issues, the main objective of the present study is to find the feasibility by using blends of rice bran oil biodiesel and diesel which are used as pilot fuels by blending 10% and 20% biodiesel in fossil diesel and biogas, introduced as gaseous fuel by varying its mass flow rate in a dual-fuel engine mode. An experimentation study was carried out to find the performance and emission parameters of the engine relative to pure diesel. The results were very much similar to the majority of researchers who used biodiesel and gaseous fuels in a dual-fuel engine. Brake specific fuel consumption (BSFC) of the engine was noticed to have increased, while brake thermal efficiency was on the lower side in dual fuel mode in comparison with regular diesel. In relation with conventional diesel, it was noticed that combined effect of rice bran methyl esters and varying mass flow rate of biogas showed a decrement in NO x and smoke emissions, whereas HC and CO exhalations were on higher side when biogas and biodiesel were utilized collectively in dual-fuel engine. Hence, it was concluded that combination of blends of biodiesel and diesel and introduction of biogas in the engine can be a promising combination which can be used as a substitute fuel for addressing future energy needs.  相似文献   

10.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

11.
Renewable fuels produced from vegetable oils are an attractive alternative to fossil-based fuel. Different type of fuels can be derived from these triglycerides. One of them is biodiesel which is a mono alkyl ester of the vegetable oil. The biodiesel is produced by transesterification of the oil with an alcohol in the presence of a catalyst. Another kind of fuel (which is similar to petroleum-derived diesel) can be produced from the vegetable oil using hydroprocessing technique. This method uses elevated temperature and pressure along with a catalyst to produce a fuel termed as ‘renewable diesel’. The fuel produced has properties that are beneficial for the engine as well as the environment. It has high cetane number, low density, excellent cold flow properties and same materials can be used as are used for engine running on petrodiesel. It can effectively reduce NOx, PM, HC, CO emissions and unregulated emissions as well as greenhouse gases as compared to diesel. The fuel is also beneficial for the after-treatment systems. Trials in the field have shown that the volumetric fuel consumption of renewable diesel is higher than petrodiesel and nearly proportional to the volumetric heating value. The present review focuses on the hydroprocessing technique used for the renewable diesel production and the effect of different parameters such as catalyst, reaction temperature, hydrogen pressure, liquid hourly space velocity (LHSV) and H2/oil ratio on oil conversion, diesel selectivity, and isomerization. The review also summarizes the effect; renewable diesel has on combustion, performance, and emission characteristics of a compression ignition engine.  相似文献   

12.
Numerous studies explored the possibility and effective strategies for supplementing hydrogen along with fossil or biofuels on internal combustion engines. Hydrogen is also being employed for formulating fuels such as hydrogen compressed natural gas in the gaseous form and hydrogenated biofuels in the liquid form. The present study evaluates (i) hydrogen usage on the fuel formulation and (ii) investigates the engine operation of an automotive turbocharged diesel engine operated with karanja biodiesel blended diesel (B20) as a reference fuel. Existing literature outlines that biodiesel blends possess lower energy content and emit higher nitric oxide (NO) emission than fossil diesel. The present research paper partially hydrogenates karanja biodiesel using an autoclave reactor with a palladium catalyst to increase the saturation levels and mitigate the biodiesel-NO penalty. Besides, the drop in energy release of B20 is compensated through the provision of hydrogen induction along the intake manifold. The hydrogen flow rates to the turbocharged engine are maintained at a fixed energy share of 10%. Both biodiesel and hydrogenated biodiesel were blended on a volume basis (20%) with fossil diesel (80%) and are designated as B20 and HB20, respectively. The test results reveal that HB20 effectively mitigates the biodiesel-NO penalty with a maximum reduction of 29.8% compared to B20. Further, hydrogen induction yielded a significant improvement (23.7%) in fuel consumption with HB20 relative to B20 without hydrogen addition. The compounding effect of hydrogen usage on the engine operation and fuel formulation exhibited a better performance and emission trade-off at mid load conditions.  相似文献   

13.
The present work considers the impact of hydrogen fuel on the environment within the cycles of its generation and combustion. Hydrogen has been portrayed by the media as a fuel that is environmentally clean because its combustion results in the formation of harmless water. However, hydrogen first must be generated. The effect of hydrogen generation on the environment depends on the production process and the related by-products. Hydrogen available on the market at present is mainly generated by using steam reforming of natural gas, which is a fossil fuel. Its by-product is CO2, which is a greenhouse gas and its emission results in global warming and climate change. Therefore, hydrogen generated from fossil fuels is contributing to global warming to the similar extent as direct combustion of the fossil fuels. On the other hand hydrogen obtained from renewable energy, such solar energy, is environmentally clean during the cycles of its generation and combustion. Consequently, the introduction of hydrogen economy must be accompanied by the development of hydrogen that is environmentally friendly. The present work considers several aspects related to the generation and utilisation of hydrogen obtained by steam reforming and solar energy conversion (solar-hydrogen).  相似文献   

14.
The fact that fossil fuels, which supply a large amount of the energy need, are limited in the world and can be only found in certain regions, have led humankind to seek alternatives. In addition, the use of fossil fuels generates wastes detrimental to humans and nature, which has led this search to alternative, clean and renewable energy sources. The use of hydrogen, which is a clean energy source, in internal combustion engines is very important in terms of reducing emission values as well as providing an alternative to petroleum-derived fuels. This study presents a literature review on the effect of the hydrogen ratio and combustion chamber geometry on the engine performance and emissions in a compression-ignition engine operating in the hydrogen diesel bi-fuel mode. As a result of the study, it was concluded that the hydrogen energy ratio should be between 5 and 20% and the combustion chamber should be designed by considering the combustion characteristics. The main purpose of the study is to highlight the functionality of the use of hydrogen in dual fuel mode in compression ignition engines and to be a resource for researchers who will work on this subject.  相似文献   

15.
The purpose of this study is to assess the political, economic and environmental impacts of producing hydrogen from biomass. Hydrogen is a promising renewable fuel for transportation and domestic applications. Hydrogen is a secondary form of energy that has to be manufactured like electricity. The promise of hydrogen as an energy carrier that can provide pollution-free, carbon-free power and fuels for buildings, industry, and transport makes it a potentially critical player in our energy future. Currently, most hydrogen is derived from non-renewable resources by steam reforming in which fossil fuels, primarily natural gas, but could in principle be generated from renewable resources such as biomass by gasification. Hydrogen production from fossil fuels is not renewable and produces at least the same amount of CO2 as the direct combustion of the fossil fuel. The production of hydrogen from biomass has several advantages compared to that of fossil fuels. The major problem in utilization of hydrogen gas as a fuel is its unavailability in nature and the need for inexpensive production methods. Hydrogen production using steam reforming methane is the most economical method among the current commercial processes. These processes use non-renewable energy sources to produce hydrogen and are not sustainable. It is believed that in the future biomass can become an important sustainable source of hydrogen. Several studies have shown that the cost of producing hydrogen from biomass is strongly dependent on the cost of the feedstock. Biomass, in particular, could be a low-cost option for some countries. Therefore, a cost-effective energy-production process could be achieved in which agricultural wastes and various other biomasses are recycled to produce hydrogen economically. Policy interest in moving towards a hydrogen-based economy is rising, largely because converting hydrogen into useable energy can be more efficient than fossil fuels and has the virtue of only producing water as the by-product of the process. Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international alike levels.  相似文献   

16.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

17.
《Applied Thermal Engineering》2007,27(13):2314-2323
The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from triglycerides (vegetable oils/animal fats) present promising “greener” substitutes for fossil fuels. Vegetable oils, due to their agricultural origin, are able to reduce net CO2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines reported in the literature, which are because of their higher viscosity and low volatility compared to mineral diesel fuel.In the present research, experiments were designed to study the effect of reducing Jatropha oil’s viscosity by increasing the fuel temperature (using waste heat of the exhaust gases) and thereby eliminating its effect on combustion and emission characteristics of the engine. Experiments were also conducted using various blends of Jatropha oil with mineral diesel to study the effect of reduced blend viscosity on emissions and performance of diesel engine. A single cylinder, four stroke, constant speed, water cooled, direct injection diesel engine typically used in agricultural sector was used for the experiments. The acquired data were analyzed for various parameters such as thermal efficiency, brake specific fuel consumption (BSFC), smoke opacity, CO2, CO and HC emissions. While operating the engine on Jatropha oil (preheated and blends), performance and emission parameters were found to be very close to mineral diesel for lower blend concentrations. However, for higher blend concentrations, performance and emissions were observed to be marginally inferior.  相似文献   

18.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

19.
The use of hydrogen in internal combustion engines is pointed out as an alternative to reduce greenhouse gas emissions. In applications that require high levels of torque and low engine speeds, compression ignition (CI) engines are more appropriate. However, because of the high auto-ignition temperature of hydrogen, its use in these engine types is more suitable when the dual-fuel concept is applied. This study comprehensively investigates, through experimental techniques, the use of hydrogen port-injection in a four-stroke single-cylinder CI engine operating with the renewable diesel-like fuels hydrotreated vegetable oil (HVO) and farnesane, in comparison to fossil diesel dual-fuel operation. In this sense, the present work aims to fill a gap in the literature by performing a novel analysis of dual-fuel operation with hydrogen, considering different substitution fractions, and using groundbreaking biofuels, such as HVO and farnesane. The results showed that in-cylinder pressure and temperature were increased with H2 enrichment for every pilot fuel, but green diesel fuels presented lower values than those for diesel operation. Furthermore, hydrogen port injection slightly delayed the start of combustion and increased the ignition delay, but a reduction in both premixed and diffusion combustion duration was observed. Reductions in PM, CO, and CO2 emissions were reported during H2 addition for every pilot fuel, while increased NOx was observed. Despite this increase, both HVO and farnesane decreased the emissions of this pollutant in single and dual-fuel operations, compared with fossil diesel. In addition, both renewable diesel fuels presented higher BTE than diesel for every studied H2 mass flow.  相似文献   

20.
Today, the world faces a number of challenges on global level. The optimum replacement for fossil fuels is one of these challenges. Hydrogen in the past has been and continues to be used by numerous researchers in diesel engines. However, high NOx emissions and low replacement of hydrogen fuel are the concern with many researchers. In the present study, di-tert butyl peroxide (DTBP) has been used as an additive in diesel fuel, to investigate the performance and exhaust emissions of the diesel engine working on dual fuel mode by using hydrogen as secondary fuel. At low, medium and high load conditions, the maximum increase in brake thermal efficiency was observed to be 87.50%, 14.68% and 5.89% respectively for 1%, 3% and 5% of additive (DTBP) by 40% of hydrogen fuel substitution, as compared to diesel fuel operation. Moreover, by addition of 4% di-tert butyl peroxide (DTBP) in diesel engine working on dual fuel mode showed 33.82%, 10.27% and 29.27% reduction in NOx emission at low, medium and high load conditions respectively at 40% hydrogen substitution, as compared to dual fuel operation using hydrogen as secondary fuel without additives. By addition of 5% additive (DTBP) at 69% load condition and 40% hydrogen substitution, reduces CO emissions by 38.66% as compared to dual fuel operation, using hydrogen as secondary fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号