首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HIV‐1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand‐transfer drug‐resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking‐based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon‐L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon‐L is able to inhibit the HIV‐1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon‐L also inhibited HIV‐1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon‐L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.  相似文献   

2.
Lysine and arginine methyltransferases participate in the posttranslational modification of histones and regulate key cellular functions. Protein arginine methyltransferase 1 (PRMT1) has been identified as an essential component of mixed lineage leukemia (MLL) oncogenic complexes, revealing its potential as a novel therapeutic target in human cancer. The first potent arginine methyltransferase inhibitors were recently discovered by random‐ and target‐based screening approaches. Herein we report virtual and biological screening for novel inhibitors of PRMT1. Structure‐based virtual screening (VS) of the Chembridge database composed of 328 000 molecules was performed with a combination of ligand‐ and target‐based in silico approaches. Nine inhibitors were identified from the top‐scored docking solutions; these were experimentally tested using human PRMT1 and an antibody‐based assay with a time‐resolved fluorescence readout. Among several aromatic amines, an aliphatic amine and an amide were also found to be active in the micromolar range.  相似文献   

3.
Pim‐1 is a serine/threonine kinase critically involved in the initiation and progression of various types of cancer, especially leukemia, lymphomas and solid tumors such as prostate, pancreas and colon, and is considered a potential drug target against these malignancies. In an effort to discover new potent Pim‐1 inhibitors, a previously identified ATP‐competitive indolyl‐pyrrolone scaffold was expanded to derive structure–activity relationship data. A virtual screening campaign was also performed, which led to the discovery of additional ATP‐competitive inhibitors as well as a series of 2‐aminothiazole derivatives, which are noncompetitive with respect to both ATP and peptide substrate. This mechanism of action, which resembles allosteric inhibition, has not previously been characterized for Pim‐1. Notably, further evaluation of the 2‐aminothiazoles indicated a synergistic inhibitory effect in enzymatic assays when tested in combination with ATP‐competitive inhibitors. A synergistic effect in the inhibition of cell proliferation by ATP‐competitive and ATP‐noncompetitive compounds was also observed in prostate cancer cell lines (PC3), where all Pim‐1 inhibitors tested in showed synergism with the known anticancer agent, paclitaxel. These results further establish Pim‐1 as a target in cancer therapy, and highlight the potential of these agents for use as adjuvant agents in the treatment of cancer diseases in which Pim‐1 is associated with chemotherapeutic resistance.  相似文献   

4.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

5.
Despite the considerable interest in protein kinase C‐related kinase 1 (PRK1) as a target in cancer research, there is still a lack of PRK1 inhibitors with suitable selectivity profiles and physicochemical properties. To identify new PRK1 inhibitors we applied a virtual screening approach, which combines ensemble docking, minimization of the protein–ligand complex, binding free energy calculations, and application of quantitative structure–activity relationship (QSAR) models for predicting in vitro activity. The developed approach was then applied in a prospective manner to screen available libraries of kinase inhibitors from Selleck and GlaxoSmithKline (GSK). Compounds that showed favorable prediction were then tested in vitro for PRK1 inhibition. Some of the hits were found to inhibit PRK1 in the low‐nanomolar range. Three in vitro hits were additionally tested in a mass‐spectrometry‐based cellular kinase profiling assay to examine selectivity. Our findings show that nanomolar and drug‐like inhibitors can be identified by the virtual screening approach presented herein. The identified inhibitors are valuable tools for gaining a better understanding of PRK1 inhibition, and the identified hits can serve as starting points for further chemical optimization.  相似文献   

6.
Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents.  相似文献   

7.
Structure‐ and ligand‐based virtual‐screening methods (docking, 2D‐ and 3D‐similarity searching) were analysed for their effectiveness in virtual screening against four different targets: angiotensin‐converting enzyme (ACE), cyclooxygenase 2 (COX‐2), thrombin and human immunodeficiency virus 1 (HIV‐1) protease. The relative performance of the tools was compared by examining their ability to recognise known active compounds from a set of actives and nonactives. Furthermore, we investigated whether the application of different virtual‐screening methods in parallel provides complementary or redundant hit lists. Docking was performed with GOLD, Glide, FlexX and Surflex. The obtained docking poses were rescored by using nine different scoring functions in addition to the scoring functions implemented as objective functions in the docking algorithms. Ligand‐based virtual screening was done with ROCS (3D‐similarity searching), Feature Trees and Scitegic Functional Fingerprints (2D‐similarity searching). The results show that structure‐ and ligand‐based virtual‐screening methods provide comparable enrichments in detecting active compounds. Interestingly, the hit lists that are obtained from different virtual‐screening methods are generally highly complementary. These results suggest that a parallel application of different structure‐ and ligand‐based virtual‐screening methods increases the chance of identifying more (and more diverse) active compounds from a virtual‐screening campaign.  相似文献   

8.
Thioredoxin reductase (TrxR) is overexpressed in cancer cells and is therefore a putative cancer target. Inhibition of this enzyme is considered an important strategy for the development of new chemotherapeutic agents with a specific mechanism of action. Organotin compounds have been described as experimental antitumor agents, yet their mechanism of action remains largely unknown. Based on the outcome of a virtual screening study, various di‐ and tri‐n‐butyltin(IV) carboxylates were synthesized, and their biological properties were evaluated. All synthesized compounds were able to inhibit TrxR selectively within the micromolar range and showed potent antitumor activity against HT‐29 and MCF‐7 cancer cell lines. Moreover, tin(IV) organometallics were found to strongly induce apoptosis in the BJAB lymphoma cell line. Mass spectrometry and atomic absorption spectroscopy experiments revealed metal binding to proteins, and efficient cellular uptake was observed using a di‐n‐butyltin(IV) complex as an example.  相似文献   

9.
SecA, a key component of the bacterial Sec‐dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA‐21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure–activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA‐dependent protein‐conducting channel activity and protein translocation activity at low‐ to sub‐micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin‐resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug‐affinity‐responsive target stability and protein pull‐down assays are consistent with SecA as a target for these compounds.  相似文献   

10.
The O‐acetylation of peptidoglycan (PG) is now known to occur in 53 species, including numerous human pathogens such as, Staphylococcus aureus, Bacillus anthracis, species of Enterococcus, Campylobacter jejuni, Helicobacter pylori, Neisseria gonorrhoeae and N. meningitidis. This modification, which occurs at the C‐6 hydroxyl of N‐acetylmuramoyl residues within PG, serves to regulate autolytic activity during PG metabolism and contributes to pathogenesis and persistence within a host. O‐Acetylpeptidoglycan esterase (Ape) was recently discovered as an enzyme responsible for the removal of O‐acetyl groups from PG, thus permitting the continued maintenance and metabolism of the sacculus. Recombinant Ape1 from N. gonorrhoeae was purified to apparent homogeneity and optimal storage conditions for the enzyme were determined. Using 4‐methylumbelliferyl acetate as substrate, a fluorogenic assay amenable for the high‐throughput screening for potential inhibitors was developed and Ape1 was screened against a subset of compounds of the Canadian Compound Collection. The overall Z′ score for the screen was 0.62, indicative of a well‐suited assay with a sufficient signal window, and the threshold was set at 65 %. After eliminating a number of false‐positives, seven compounds were identified as true inhibitors of Ape1, the first to be identified for this class of enzyme. Dose–response curves were generated leading to the identification of five of these compounds with IC50 values ranging between 0.3 and 23 μM . Of these, purpurin was selected for further analysis and it was found to inhibit the growth of both Gram‐positive and Gram‐negative bacteria that produce both O‐acetylated PG and Ape.  相似文献   

11.
Phosphorylation-dependent protein–protein interactions play a significant role in biological signaling pathways; therefore, small molecules that are capable of influencing these interactions can be valuable research tools and have potential as pharmaceutical agents. MEMO1 (mediator of ErbB2-cell driven motility) is a phosphotyrosine-binding protein that interacts with a variety of protein partners and has been found to be upregulated in breast cancer patients. Herein, we report the first small-molecule inhibitors of MEMO1 interactions identified through a virtual screening platform and validated in a competitive fluorescence polarization assay. Initial structure–activity relationships have been investigated for these phenazine-core inhibitors and the binding sites have been postulated using molecular dynamics simulations. The most potent biochemical inhibitor is capable of disrupting the large protein interface with a KI of 2.7 μm . In addition, the most promising phenazine core compounds slow the migration of breast cancer cell lines in a scratch assay.  相似文献   

12.
Several small molecules that bind to the inactive DFG‐out conformation of tyrosine kinases (called type II inhibitors) have shown a good selectivity profile over other kinase targets. To obtain a set of DFG‐out structures, we performed an explicit solvent molecular dynamics (MD) simulation of the complex of the catalytic domain of a tyrosine kinase receptor, ephrin type‐A receptor 3 (EphA3), and a manually docked type II inhibitor. Automatic docking of four previously reported type II inhibitors was used to select a single snapshot from the MD trajectory for virtual screening. High‐throughput docking of a pharmacophore‐tailored library of 175 000 molecules resulted in about 4 million poses, which were further filtered by van der Waals efficiency and ranked according to a force‐field‐based energy function. Notably, around 20 % of the compounds with predicted binding energy smaller than ?10 kcal mol?1 are known type II inhibitors. Moreover, a series of 5‐(piperazine‐1‐yl)isoquinoline derivatives was identified as a novel class of low‐micromolar inhibitors of EphA3 and unphosphorylated Abelson tyrosine kinase (Abl1). The in silico predicted binding mode of the new inhibitors suggested a similar affinity to the gatekeeper mutant T315I of Abl1, which was verified in vitro by using a competition binding assay. Additional evidence for the type II binding mode was obtained by two 300 ns MD simulations of the complex between N‐(3‐chloro‐4‐(difluoromethoxy)phenyl)‐2‐(4‐(8‐nitroisoquinolin‐5‐yl)piperazin‐1‐yl)acetamide and EphA3.  相似文献   

13.
The methyllysine reader protein Spindlin1 has been implicated in the tumorigenesis of several types of cancer and may be an attractive novel therapeutic target. Small‐molecule inhibitors of Spindlin1 should be valuable as chemical probes as well as potential new therapeutics. We applied an iterative virtual screening campaign, encompassing structure‐ and ligand‐based approaches, to identify potential Spindlin1 inhibitors from databases of commercially available compounds. Our in silico studies coupled with in vitro testing were successful in identifying novel Spindlin1 inhibitors. Several 4‐aminoquinazoline and quinazolinethione derivatives were among the active hit compounds, which indicated that these scaffolds represent promising lead structures for the development of Spindlin1 inhibitors. Subsequent lead optimization studies were hence carried out, and numerous derivatives of both lead scaffolds were synthesized. This resulted in the discovery of novel inhibitors of Spindlin1 and helped explore the structure–activity relationships of these inhibitor series.  相似文献   

14.
Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents.  相似文献   

15.
Targeting protein–protein interactions, such as the HIV‐1 gp120—CD4 interface, has become a cutting‐edge approach in the current drug discovery scenario. Many small molecules have been developed so far as inhibitors of the interaction between CD4 and HIV‐1 gp120. However, due to a variety of reasons such as solubility, drug toxicity and drug resistance, these inhibitors have failed to prove clinically useful. As such, the identification of novel compounds that bind to protein–protein interactions is still a research area of considerable interest. Here, a structure‐based virtual screening approach was successfully applied with the aim of identifying novel HIV‐1 entry inhibitors targeting the Phe 43 pocket of HIV‐1 gp120. Several compounds able to inhibit viral replication in cell culture were identified, with the best agent endowed with an EC50 value of 0.9 μM . Inactivity of all the identified hits toward a mutant (Met 475 Ile) strain strongly suggests that they interact in the Phe 43 cavity of gp120, as intended. Remarkably, all of these small molecules have a chemical scaffold unrelated to any known class of entry inhibitors reported thus far. Overall, our strategy led to the identification of four novel chemical scaffolds that inhibit HIV‐1 replication through the destabilization of the HIV‐1 gp120–CD4 interface.  相似文献   

16.
Four heteroaromatic compounds bearing nitrate esters were selected using a virtual‐screening procedure as putative sterol 14α‐demethylase (CYP51) Candida albicans inhibitors. Compounds were examined for their inhibition on C. albicans growth and biofilm formation as well as for their toxicity. NMR spectroscopy studies, in silico docking, and molecular dynamics simulations were used to investigate further the selectivity of these compounds to fungal CYP51. All compounds exhibited good antimicrobial properties, indicated with low minimal inhibitory concentrations and ability to inhibit formation of fungal biofilm. Moreover, all of the compounds had the ability to inhibit growth of C. albicans cells. N‐(2‐Nitrooxyethyl)‐1Η‐indole‐2‐carboxamide was the only compound with selectivity on C. albicans CYP51 that did not exhibit cytotoxic effect on cells isolated from liver and should be further investigated for selective application in new leads for the treatment of candidiasis.  相似文献   

17.
Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.  相似文献   

18.
Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO), two key enzymes involved in pro-inflammatory eicosanoid biosynthesis, represents a new strategy for treating inflammatory disorders. Herein we report the discovery of 2,4-thiazolidinedione-based mPGES-1/5-LO dual inhibitors following a multidisciplinary protocol, involving virtual combinatorial screening, chemical synthesis, and validation of the biological activities for the selected compounds. Following the multicomponent-based chemical route for the decoration of the 2,4-thiazolidinedione core, a large library of virtual compounds was built (∼2.0×104 items) and submitted to virtual screening. Nine selected molecules were synthesized and biologically evaluated, disclosing among them four compounds able to reduce the activity of both enzymes in the mid- and low- micromolar range of activities. These results are of interest for further expanding the chemical diversity around the 2,4-thiazolidinedione central core, facilitating the identification of novel anti-inflammatory agents endowed with a promising and safer pharmacological profile.  相似文献   

19.
The inhibitors of histone deacetylases (HDACs) have drawn a great deal of attention due to their promising potential as small‐molecule therapeutics for the treatment of cancer. By means of virtual screening with docking simulations under consideration of the effects of ligand solvation, we were able to identify six novel HDAC inhibitors with IC50 values ranging from 1 to 100 μM . These newly identified inhibitors are structurally diverse and have various chelating groups for the active site zinc ion, including N‐[1,3,4]thiadiazol‐2‐yl sulfonamide, N‐thiazol‐2‐yl sulfonamide, and hydroxamic acid moieties. The former two groups are included in many drugs in current clinical use and have not yet been reported as HDAC inhibitors. Therefore, they can be considered as new inhibitor scaffolds for the development of anticancer drugs by structure–activity relationship studies to improve the inhibitory activities against HDACs. Interactions with the HDAC1 active site residues responsible for stabilizing these new inhibitors are addressed in detail.  相似文献   

20.
Matrix metalloproteinases (MMPs) are zinc‐dependent enzymes involved in several pathological states. Among them, MMP‐2 is a relevant therapeutic target because of its role in cancer development and progression. Many MMP inhibitors (MMPIs) have been discovered over the last 30 years, and the majority of them contain a functional group that binds the zinc ion (zinc‐binding group; ZBG). Unfortunately, no MMPIs have reached the market yet, owing to toxic effects due to unselective interactions of the ZBG. The new generation of MMPIs that do not bind the zinc ion could overcome problems of selectivity and toxicity, but have so far been developed only for MMP‐8, ‐12, and ‐13. In this work, a virtual screening protocol was established by combining ligand‐ and structure‐based methods to identify non‐zinc‐binding MMP‐2 inhibitors using a new‐generation MMP‐8 inhibitor as a probe to find unexplored interactions in the MMP‐2 S1′ site. The screening allowed the identification of micromolar MMP‐2 inhibitors that putatively avoid binding the zinc ion, as demonstrated by docking calculations. The LIA model, built to correlate predicted and experimental binding energies of the identified non‐zinc‐binding MMP‐2 hits, underpins the reliability of the predicted docking poses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号