首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kinase inhibitors are increasingly important in drug development. Because the majority of current inhibitors target the conserved ATP‐binding site, selectivity might become an important issue. This could be particularly problematic for the potential drug target protein kinase C (PKC), of which twelve isoforms with high homology exist in humans. A strategy to increase selectivity is to prepare bisubstrate‐based inhibitors that target the more selective peptide‐binding site in addition to the ATP‐binding site. In this paper a generally applicable, rapid methodology is presented to discover such bisubstrate‐based leads. Dynamic peptide microarrays were used to find peptide‐binding site inhibitors. These were linked with chemoselective click chemistry to an ATP‐binding site inhibitor, and this led to novel bisubstrate structures. The peptide microarrays were used to evaluate the resulting inhibitors. Thus, novel bisubstrate‐based inhibitors were obtained that were both more potent and selective compared to their constituent parts. The most promising inhibitor has nanomolar affinity and selectivity towards PKCθ amongst three isozymes.  相似文献   

3.
4.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

5.
6.
The Janus kinase (JAK) signaling pathway is of particular importance in the pathology of inflammatory diseases and oncological disorders, and the inhibition of Janus kinase 3 (JAK3) with small molecules has proven to provide therapeutic immunosuppression. A novel class of tricyclic JAK inhibitors derived from the 3‐methyl‐1,6‐dihydrodipyrrolo[2,3‐b:2′,3′‐d]pyridine scaffold was designed based on the tofacitinib–JAK3 crystal structure by applying a rigidization approach. A convenient synthetic strategy to access the scaffold via an intramolecular Heck reaction was developed, and a small library of inhibitors was prepared and characterized using in vitro biochemical as well as cellular assays. IC50 values as low as 220 pM could be achieved with selectivity for JAK3 over other JAK family members. Both activity and selectivity were confirmed in a cellular STAT phosphorylation assay, providing also first‐time data for tofacitinib. Our novel inhibitors may serve as tool compounds and useful probes to explore the role of JAK3 inhibition in pharmacodynamics studies.  相似文献   

7.
Polo‐like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N‐terminal kinase domain and C‐terminal polo‐box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (?)‐epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein‐labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose‐dependent inhibition of the PBD and preliminary structure–activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell‐cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.  相似文献   

8.
9.
The gut hormone peptide YY (PYY) is postprandially secreted from enteroendocrine L cells and is involved in the regulation of energy homeostasis. The N‐terminal truncated version PYY(3–36) decreases food intake and has potential as an anti‐obesity agent. The anorectic effect of PYY(3–36) is mediated through Y2 receptors in the hypothalamus, vagus, and brainstem regions, and it is well known that the C‐terminal tetrapeptide sequence of PYY(3–36) is crucial for Y2 receptor activation. The aim of this work was to develop a semisynthetic methodology for the generation of a library of C‐terminally modified PYY(3–36) analogues. By using an intein‐based expression system, PYY(3–29) was generated as a C‐terminal peptide α‐thioester. Heptapeptides bearing an N‐terminal cysteine and modifications at one of the four C‐terminal positions were synthesized in a 96‐well plate by parallel solid‐phase synthesis. In the plate format, an array of [Ala30]PYY(3–36) analogues were generated by ligation, desulfurization, and subsequent solid‐phase extraction. The generated analogues, in which either Arg33, Gln34, Arg35, or Tyr36 had been substituted with proteinogenic or non‐proteinogenic amino acids, were tested in a functional Y2 receptor assay. Generally, substitutions of Tyr36 were better tolerated than modifications of Arg33, Gln34, and Arg35. Two analogues showed significantly improved Y2 receptor selectivity; therefore, these results could be used to design new drug candidates for the treatment of obesity.  相似文献   

10.
Peptide dendrimers are a class of molecules of high interest in the search for new antibiotics. We used microwave‐assisted, copper(I)‐catalyzed alkyne–azide cycloaddition (CuAAC; “click” chemistry) for the simple and versatile synthesis of a new class of multivalent antimicrobial peptides (AMPs) containing solely arginine and tryptophan residues. To investigate the influence of multivalency on antibacterial activity, short solid‐phase‐ synthesized azide‐modified Arg‐Trp‐containing peptides were “clicked” to three different alkyne‐modified benzene scaffolds to access scaffolds with one, two, or three peptides. The antibacterial activity of 15 new AMPs was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains, including a multidrug‐resistant Staphylococcus aureus (MRSA) strain. With ultrashort (2–3 residues) peptides, a clear synergistic effect of the trivalent display was observed, whereas this effect was not apparent with longer peptides. The best candidates showed activities in the low‐micromolar range against Gram‐positive MRSA. Surprisingly, the best activity against Gram‐negative Acinetobacter baumannii was observed with an ultrashort dipeptide on the trivalent scaffold (MIC: 7.5 μM ). The hemolytic activity was explored for the three most active peptides. At concentrations ten times the MIC values, <1 % hemolysis of red blood cells was observed.  相似文献   

11.
Although human cytomegalovirus (HCMV) infection is mostly asymptomatic for immunocompetent individuals, it remains a serious threat for those who are immunocompromised, in whom it is associated with various clinical manifestations. The therapeutic utility of the few available anti‐HCMV drugs is limited by several drawbacks, including cross‐resistance due to their common mechanism of action, i.e., inhibition of viral DNA polymerase. Therefore, compounds that target other essential viral events could overcome this problem. One example of this is the 6‐aminoquinolone WC5 , which acts by directly blocking the transactivation of essential viral Early genes by the Immediate‐Early 2 (IE2) protein. In this study, the quinolone scaffold of the lead compound WC5 was investigated in depth, defining more suitable substituents for each of the scaffold positions explored and identifying novel, potent and nontoxic compounds. Some compounds showed potent anti‐HCMV activity by interfering with IE2‐dependent viral E gene expression. Among them, naphthyridone 1 was also endowed with potent anti‐HIV activity in latently infected cells. Their antiviral profile along with their innovative mechanism of action make these anti‐HCMV quinolones a very promising class of compounds to be exploited for more effective antiviral therapeutic treatment.  相似文献   

12.
13.
Cathepsin C is a papain‐like cysteine protease with dipeptidyl aminopeptidase activity that is thought to activate various granule‐associated serine proteases. Its exopeptidase activity is structurally explained by the so‐called exclusion domain, which blocks the active‐site cleft beyond the S2 site and, with its Asp 1 residue, provides an anchoring point for the N terminus of peptide and protein substrates. Here, the hydrazide of (2S,3S)‐trans‐epoxysuccinyl‐L ‐leucylamido‐3‐methylbutane (E‐64c) (k2/Ki=140±5 M ?1 s?1) is demonstrated to be a lead structure for the development of irreversible cathepsin C inhibitors. The distal amino group of the hydrazide moiety addresses the acidic Asp 1 residue at the entrance of the S2 pocket by hydrogen bonding while also occupying the flat hydrophobic S1′–S2′ area with its leucine‐isoamylamide moiety. Furthermore, structure–activity relationship studies revealed that functionalization of this distal amino group with alkyl residues can be used to occupy the conserved hydrophobic S2 pocket. In particular, the n‐butyl derivative was identified as the most potent inhibitor of the series (k2/Ki=56 000±1700 M ?1 s?1).  相似文献   

14.
Increasing evidence suggests key roles for members of the mammalian Sterile20‐like (MST) family of kinases in many aspects of biology. MST3 is a member of the STRIPAK complex, the deregulation of which has recently been associated with cancer cell migration and metastasis. Targeting MST3 with small‐molecule inhibitors may be beneficial for the treatment of certain cancers, but little information exists on the potential of kinase inhibitor scaffolds to engage with MST3. In this study we screened MST3 against a library of 277 kinase inhibitors using differential scanning fluorimetry and confirmed 14 previously unknown MST3 inhibitors by X‐ray crystallography. These compounds, of which eight are in clinical trials or FDA approved, comprise nine distinct chemical scaffolds that inhibit MST3 enzymatic activity with IC50 values between 0.003 and 23 μm . The structure–activity relationships explain the differential inhibitory activity of these compounds against MST3 and the structural basis for high binding potential, the information of which may serve as a framework for the rational design of MST3‐selective inhibitors as potential therapeutics and to interrogate the function of this enzyme in diseased cells.  相似文献   

15.
Activating mutations of FMS‐like tyrosine kinase 3 (FLT3) are present in ~30 % of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Point mutations in the tyrosine kinase domain (TKD) are observed as primary mutations or are acquired as secondary mutations in FLT3 with internal tandem duplications (ITDs) after treatment with tyrosine kinase inhibitors (TKIs). Although dozens of potent inhibitors against FLT3 ITD have been reported, activating TKD point mutations, especially at residues F691 and D835, remain the leading cause for therapy resistance, highlighting the consistent need for new potent inhibitors. Herein we report the identification and characterization of novel quinoxaline‐based FLT3 inhibitors. We used the pharmacophore features of diverse known inhibitors as a starting point for a new optimization algorithm for type II TKIs, starting from an in silico library pharmacophore search and induced‐fit docking in the known FLT3 structure. This led to the design of a set of diverse quinoxalinebisarylureas, which were profiled in an FLT3 kinase activity assay. The most promising compounds were further evaluated in a zebrafish embryo phenotype assay.  相似文献   

16.
Infections caused by the hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The NS5B polymerase of HCV is responsible for the replication of viral RNA and has been a prime target in the search for novel treatment options. We had discovered allosteric finger‐loop inhibitors based on a thieno[3,2‐b]pyrrole scaffold as an alternative to the related indole inhibitors. Optimization of the thienopyrrole series led to several N‐acetamides with submicromolar potency in the cell‐based replicon assay, but they lacked oral bioavailability in rats. By linking the N4‐position to the ortho‐position of the C5‐aryl group, we were able to identify the tetracyclic thienopyrrole 40 , which displayed a favorable pharmacokinetic profile in rats and dogs and is equipotent with recently disclosed finger‐loop inhibitors based on an indole scaffold.  相似文献   

17.
Yi Wang  Prof. Shutao Ma 《ChemMedChem》2013,8(10):1589-1608
Bacterial infections are a constant and serious threat to human health. With the increase of multidrug resistance of clinically pathogenic bacteria, common antibiotic therapies have been less effective. Fatty acid synthesis type II (FASII) system enzymes are essential for bacterial membrane lipid biosynthesis and represent increasingly promising targets for the discovery of antibacterial agents with new mechanisms of action. This review highlights recent advances in inhibitors of bacterial FASII as potential antibacterial agents, paying special attention to the activities, mechanisms, and structure–activity relationships of those inhibitors that mainly target β‐ketoacyl‐ACP synthase, β‐ketoacyl‐ACP reductase, β‐hydroxyacyl‐ACP dehydratase, and enoyl‐ACP reductase. Although inhibitors with low nanomolar and selective activity against various bacterial FASII have entered clinical trials, further research is needed to expand upon both available and yet unknown scaffolds to identify new FASII inhibitors that may have antibacterial potential, particularly against resistant bacterial strains.  相似文献   

18.
The completion of the human genome sequencing project has provided a wealth of new information regarding the genomic blueprint of the cell. Although, to date, there are roughly 20 000 genes in the human genome, the functions of only a handful of proteins are clear. The major challenge lies in translating genomic information into an understanding of their cellular functions. The recently developed activity‐based protein profiling (ABPP) is an unconventional approach that is complementary for gene expression analysis and an ideal utensil in decoding this overflow of genomic information. This approach makes use of synthetic small molecules that covalently modify a set of related proteins and subsequently facilitates identification of the target protein, enabling rapid biochemical analysis and inhibitor discovery. This tutorial review introduces recent advances in the field of ABPP and its applications.  相似文献   

19.
Novel picolinamide‐based histone deacetylase (HDAC) inhibitors were developed, drawing inspiration from the natural product psammaplin A. We found that the HDAC potency and isoform selectivity provided by the oxime unit of psammaplin A could be reproduced by using carefully chosen heterocyclic frameworks. The resulting (hetero)aromatic amide based compounds displayed very high potency and isoform selectivity among the HDAC family, in addition to excellent ligand efficiency relative to previously reported HDAC inhibitors. In particular, the high HDAC1 isoform selectivity provided by the chloropyridine motif represents a valuable design criterion for the development of new lead compounds and chemical probes that target HDAC1.  相似文献   

20.
Peptidic ligands selectively targeting distinct G protein‐coupled receptors that are highly expressed in tumor tissue represent a promising approach in drug delivery. Receptor‐preferring analogues of neuropeptide Y (NPY) bind and activate the human Y1 receptor subtype (hY1 receptor), which is found in 90 % of breast cancer tissue and in all breast‐cancer‐derived metastases. Herein, novel highly boron‐loaded Y1‐receptor‐preferring peptide analogues are described as smart shuttle systems for carbaboranes as 10B‐containing moieties. Various positions in the peptide were screened for their susceptibility to carbaborane modification, and the most promising positions were chosen to create a multi‐carbaborane peptide containing 30 boron atoms per peptide with excellent activation and internalization patterns at the hY1 receptor. Boron uptake studies by inductively coupled plasma mass spectrometry revealed successful uptake of the multi‐carbaborane peptide into hY1‐receptor‐expressing cells, exceeding the required amount of 109 boron atoms per cell. This result demonstrates that the NPY/hY receptor system can act as an effective transport system for boron‐containing moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号