首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
4.
Load‐bearing capacity tables for unreinforced masonry according to DIN EN 1996‐3/NA:2019‐12 Practical design aids are important tools in the day‐to‐day business of structural design. The design of primarily vertically loaded masonry walls in usual building construction can be carried out with the help of so‐called load‐bearing capacity tables. A table value is read off exclusively as a function of the geometric conditions, which – multiplied by the masonry compressive strength – results in the load‐bearing capacity of the wall for cold design and in case of fire. By comparing the acting and resisting force, the verification of structural design can be provided in a simple and yet economical form. The bearing capacity tables based on the simplified calculation methods according to DIN EN 1996‐3/NA:2019‐12 [1], [2] and DIN EN 1996‐1‐2/NA:2013‐06 [3], [4] are presented in this paper. Compared to the previous edition of Part 3 of Eurocode 6, the extended scope of application is taken into account, as well as the normative changes to the construction method with partially supported slabs.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The European Standard EN 1012 – 2 Compressors and vacuum pumps – safety requirements is established in March 1996. The English text will be published in 1997. This standard is deduced from the ?Mashinery directive”? which has the state of a law in all EC member states and superseeds all so far existing national standards on this subject. In Germany for vacuum pumps it is the ?Unfallverhütungsvorschrift für Verdichter”? (compressors and vacuum pumps) VBG 16, which now is partially replaced by the new standard EN 1012. In the following the contents and the mode of employment of the new standard is discussed.  相似文献   

13.
14.
15.
16.
17.
18.
European standardization bodies are currently working on the amendment to EN 1996‐1‐1, which will also affect the evaluation of reinforced masonry in Germany. For that reason, discussion suggestions are being made here for revisions to lay the groundwork for building materials evaluations and especially, evaluations of bending load‐stressed masonry walls or beams at their serviceability limit state (SLS) for load‐bearing capacities. Information already presented in E DIN 1053‐3:2008‐03 [N3] is being incorporated as well. Characteristic values for the compressive strength of the masonry parallel to the bed joints fk,∥ are essential for the design of reinforced masonry, although they are currently not included in national application documents for Germany. For the time being, they can be mathematically calculated using conversion factors for the characteristic compressive strength values vertical to the bed joints fk or by using the declared axial compressive strengths of the masonry units. The ultimate strains for masonry in general should be set consistently at ?mu = ∣–0.002∣ as several masonry types do not exhibit higher compressive strain values. The use of steel strains higher than ?su = 0.005 does not change any measurement results. Varying stress‐strain curves of the constitutive equations on masonry under compressive strain (parabolic, parabolic‐rectangular, tension block) lead to differing values of recordable bending moments despite having the same mechanical reinforcement percentage at higher normal forces. Therefore, clear guidelines should be made for the type of applicable constitutive equation for masonry walls under compressive strain. With the introduction of a tension block, the number values of the reduction factors λ for the compression zone height x, which is dependent on limit strains, and where applicable, reduced compressive strength, need to be determined, as with reinforced concrete construction. A modification of the bending moment based on the second order theory according to [N4] is presented for the calculation of reinforced masonry walls in danger of buckling. The use of reduction factors for the load capacity of the masonry cross section, such as for unreinforced masonry, does not appear to be appropriate as buckling safety evidence because here, the design task is the determination of a required reinforcement cross section.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号